Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(7): 2028-2041, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056049

RESUMO

In this study, we investigate a gene augmentation therapy candidate for the treatment of retinitis pigmentosa (RP) due to cyclic nucleotide-gated channel beta 1 (CNGB1) mutations. We use an adeno-associated virus serotype 5 with transgene under control of a novel short human rhodopsin promoter. The promoter/capsid combination drives efficient expression of a reporter gene (AAV5-RHO-eGFP) exclusively in rod photoreceptors in primate, dog, and mouse following subretinal delivery. The therapeutic vector (AAV5-RHO-CNGB1) delivered to the subretinal space of CNGB1 mutant dogs restores rod-mediated retinal function (electroretinographic responses and vision) for at least 12 months post treatment. Immunohistochemistry shows human CNGB1 is expressed in rod photoreceptors in the treated regions as well as restoration of expression and trafficking of the endogenous alpha subunit of the rod CNG channel required for normal channel formation. The treatment reverses abnormal accumulation of the second messenger, cyclic guanosine monophosphate, which occurs in rod photoreceptors of CNGB1 mutant dogs, confirming formation of a functional CNG channel. In vivo imaging shows long-term preservation of retinal structure. In conclusion, this study establishes the long-term efficacy of subretinal delivery of AAV5-RHO-CNGB1 to rescue the disease phenotype in a canine model of CNGB1-RP, confirming its suitability for future clinical development.


Assuntos
Parvovirinae , Retinose Pigmentar , Humanos , Animais , Cães , Camundongos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Eletrorretinografia , Rodopsina/metabolismo
2.
PLoS One ; 17(12): e0279437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584140

RESUMO

PURPOSE: To investigate whether raised levels of retinal cyclic guanosine monophosphate (cGMP) was reflected in plasma levels in PDE6A-/- dogs. MATERIALS AND METHODS: Retina was collected from 2-month-old wildtype dogs (PDE6A+/+, N = 6), heterozygous dogs (PDE6A+/-, N = 4) and affected dogs (PDE6A-/-, N = 3) and plasma was collected from 2-month-old wildtype dogs (PDE6A+/+, N = 5), heterozygous dogs (PDE6A+/-, N = 5) and affected dogs (PDE6A-/-, N = 5). Retina and plasma samples were measured by ELISA. RESULTS: cGMP levels in retinal samples of PDE6A-/- dogs at 2 months of age were significantly elevated. There was no significant difference in plasma cGMP levels between wildtype and PDE6A-/- or PDE6A+/- puppies. However, the plasma cGMP levels of the PDE6A-/- puppies were significantly lower than that of PDE6A+/- puppies. CONCLUSION: cGMP levels in the plasma from PDE6A-/- was not elevated when compared to control dogs. At the 2-month timepoint, cGMP plasma levels would not be a useful biomarker for disease.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Retinose Pigmentar , Cães , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Retina , GMP Cíclico , Heterozigoto
3.
Hum Mol Genet ; 31(8): 1263-1277, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34726233

RESUMO

Pathogenic variants in retinol dehydrogenase 5 (RDH5) attenuate supply of 11-cis-retinal to photoreceptors leading to a range of clinical phenotypes including night blindness because of markedly slowed rod dark adaptation and in some patients, macular atrophy. Current animal models (such as Rdh5-/- mice) fail to recapitulate the functional or degenerative phenotype. Addressing this need for a relevant animal model we present a new domestic cat model with a loss-of-function missense mutation in RDH5 (c.542G > T; p.Gly181Val). As with patients, affected cats have a marked delay in recovery of dark adaptation. In addition, the cats develop a degeneration of the area centralis (equivalent to the human macula). This recapitulates the development of macular atrophy that is reported in a subset of patients with RDH5 mutations and is shown in this paper in seven patients with biallelic RDH5 mutations. There is notable variability in the age at onset of the area centralis changes in the cat, with most developing changes as juveniles but some not showing changes over the first few years of age. There is similar variability in development of macular atrophy in patients and while age is a risk factor, it is hypothesized that genetic modifying loci influence disease severity, and we suspect the same is true in the cat model. This novel cat model provides opportunities to improve molecular understanding of macular atrophy and test therapeutic interventions for RDH5-associated retinopathies.


Assuntos
Degeneração Macular , Doenças Retinianas , Oxirredutases do Álcool/genética , Animais , Atrofia , Gatos , Eletrorretinografia , Humanos , Camundongos , Modelos Animais , Fenótipo , Doenças Retinianas/genética
4.
Vet Ophthalmol ; 25(2): 109-117, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34708922

RESUMO

OBJECTIVE: To report the development of focal bullous retinal detachments (bullae) in dogs with different forms of progressive retinal atrophy (PRA). PROCEDURES: Dogs with three distinct forms of PRA (PRA-affected Whippets, German Spitzes and CNGB1-mutant Papillon crosses) were examined by indirect ophthalmoscopy and spectral domain optical coherence tomography (SD-OCT). Retinal bullae were monitored over time. One CNGB1-mutant dog was treated with gene augmentation therapy. The canine BEST1 gene coding region and flanking intronic sequence was sequenced in at least one affected dog of each breed. RESULTS: Multiple focal bullous retinal detachments (bullae) were identified in PRA-affected dogs of all three types. They developed in 4 of 5 PRA-affected Whippets, 3 of 8 PRA-affected Germans Spitzes and 15 of 20 CNGB1-mutant dogs. The bullae appeared prior to marked retinal degeneration and became less apparent as retinal degeneration progressed. Bullae were not seen in any heterozygous animals of any of the types of PRA. Screening of the coding region and flanking intronic regions of the canine BEST1 gene failed to reveal any associated pathogenic variants. Retinal gene augmentation therapy in one of the CNGB1-mutant dogs appeared to prevent formation of bullae. CONCLUSIONS: Retinal bullae were identified in dogs with three distinct forms of progressive retinal atrophy. The lesions develop prior to retinal thinning. This clinical change should be monitored for in dogs with PRA.


Assuntos
Doenças do Cão , Degeneração Retiniana , Animais , Atrofia/patologia , Atrofia/veterinária , Vesícula/patologia , Vesícula/veterinária , Doenças do Cão/genética , Doenças do Cão/patologia , Cães , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/veterinária
5.
Cell Physiol Biochem ; 48(3): 1274-1290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30045019

RESUMO

BACKGROUND/AIMS: Human enterocytic differentiation is altered during development, fasting, adaptation, and bariatric surgery, but its intracellular control remains unclear. We hypothesized that Schlafen 12 (SLFN12) regulates enterocyte differentiation. METHODS: We used laser capture dissection of epithelium, qRT-PCR, and immunohistochemistry to evaluate SLFN12 expression in biopsies of control and fasting human duodenal mucosa, and viral overexpression and siRNA to trace the SLFN12 pathway in human Caco-2 and HIEC6 intestinal epithelial cells. RESULTS: Fasting human duodenal mucosa expressed less SLFN12 mRNA and protein, accompanied by decreases in enterocytic markers like sucrase-isomaltase. SLFN12 overexpression increased Caco-2 sucrase-isomaltase promoter activity, mRNA, and protein independently of proliferation, and activated the SLFN12 putative promoter. SLFN12 coprecipitated Serpin B12 (SERPB12). An inactivating SLFN12 point mutation prevented both SERPB12 binding and sucrase-isomaltase induction. SERPB12 overexpression also induced sucrase-isomaltase, while reducing SERPB12 prevented the SLFN12 effect on sucrase-isomaltase. Sucrase-isomaltase induction by both SLFN12 and SERPB12 was attenuated by reducing UCHL5 or USP14, and blocked by reducing both. SERPB12 stimulated USP14 but not UCHL5 activity. SERPB12 coprecipitated USP14 but not UCHL5. Moreover, SLFN12 increased protein levels of the sucrase-isomaltase-promoter-binding transcription factor cdx2 without altering Cdx2 mRNA. This was prevented by reducing UCHL5 and USP14. We further validated this pathway in vitro and in vivo. SLFN12 or SERPB12 overexpression induced sucrase-isomaltase in human non-malignant HIEC-6 enterocytes. CONCLUSIONS: SLFN12 regulates human enterocytic differentiation by a pathway involving SERPB12, the deubiquitylases, and Cdx2. This pathway may be targeted to manipulate human enterocytic differentiation in mucosal atrophy, short gut or obesity.


Assuntos
Diferenciação Celular , Enzimas Desubiquitinantes/metabolismo , Enterócitos/citologia , Mapas de Interação de Proteínas , Proteínas/metabolismo , Serpinas/metabolismo , Células CACO-2 , Células Cultivadas , Enterócitos/metabolismo , Jejum , Humanos
6.
Biochim Biophys Acta ; 1843(12): 3029-37, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261706

RESUMO

Schlafen 3 (Slfn3) mediates rodent enterocyte differentiation in vitro and in vivo, required for intestinal function. Little is known about Schlafen protein structure-function relationships. To define the Slfn3 domain that promotes differentiation, we studied villin and sucrase isomaltase (SI) promoter activity in Slfn3-null human Caco-2BBE cells transfected with full-length rat Slfn3 DNA or truncated constructs. Confocal microscopy and Western blots showed that Slfn3 is predominantly cytosolic. Villin promoter activity, increased by wild type Slfn3, was further enhanced by adding a nuclear exclusion sequence, suggesting that Slfn3 does not affect transcription by direct nuclear action. We therefore sought to dissect the region in Slfn3 stimulating promoter activity. Since examination of the Slfn3 N-terminal region revealed sequences similar to both an aminopeptidase (App) and a divergent P-loop resembling those in NTPases, we initially divided Slfn3 into an N-terminal domain containing the App and P-loop regions, and a C-terminal region. Only the N-terminal construct stimulated promoter activity. Further truncation indicated that both the App and the smaller P-loop constructs enhanced promoter activity similarly to the N-terminal sequence. Point mutations within the N-terminal region (R128L, altering a critical active site residue in the App domain, and L212D, conserved in Schlafens but variable in P-loop proteins) did not affect activity. These results show that Slfn3 acts in the cytosol to trigger a secondary signal cascade that elicits differentiation marker expression and narrows the active domain to the third of the Slfn3 sequence homologous to P-loop NTPases, a first step in understanding its mechanism of action.

7.
PLoS One ; 8(11): e79745, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244554

RESUMO

Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3) is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3) or silencing RNA for Slfn3 (siSlfn3) was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI), Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Mucosa Intestinal/metabolismo , Proteínas/genética , RNA Interferente Pequeno/genética , Animais , Apoptose , Atrofia , Biomarcadores , Células CACO-2 , Diferenciação Celular/genética , Proliferação de Células , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Jejuno/metabolismo , Masculino , Proteínas dos Microfilamentos/genética , RNA Mensageiro/genética , Ratos , Transdução Genética , Transfecção , Transgenes
8.
Am J Surg ; 204(5): 598-601, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22906252

RESUMO

BACKGROUND: Understanding gut development may illuminate the adaptive response to massive small-bowel resection and facilitate enteral nutrition. We reported that Schlafen-3 (Slfn3) mediates differentiation in vitro in rat intestinal epithelial. We hypothesized that Slfn3 is involved in intestinal development in vivo. METHODS: We removed fetal intestines, liver, and lungs on day 20 of gestation, at birth, and on postnatal days 1 and 5. Expression of Slfn3, markers of intestinal differentiation, and Slfn5, to address specificity, were determined by quantitative reverse-transcription polymerase chain reaction. RESULTS: Villin expression increased on days 1 and 5 (8.7 ± .6 and 5.4 ± .4, respectively; P < .01). Intestinal Slfn3 expression was increased substantially after birth (2.1- ± .5-fold) and on days 1 and 5 (P < .02). Slfn3 was higher after birth in liver and lung but decreased sharply thereafter. Slfn5 expression was mostly unchanged. CONCLUSIONS: The data suggest that the developmental/maturation effects we observed correlate with Slfn3 but not Slfn5 and are more relevant to the intestines. A better understanding of how Slfn3 promotes intestinal differentiation could help promote intestinal maturation, improving outcomes in children or adults with short-gut syndrome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Proteínas/metabolismo , Animais , Biomarcadores/metabolismo , Dipeptidil Peptidase 4/metabolismo , Mucosa Intestinal/embriologia , Mucosa Intestinal/crescimento & desenvolvimento , Jejuno/embriologia , Jejuno/crescimento & desenvolvimento , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Proc Natl Acad Sci U S A ; 108(36): 14992-7, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21849619

RESUMO

Environmental stress leads to dramatic transcriptional reprogramming, which is central to plant survival. Although substantial knowledge has accumulated on how a few plant cis-regulatory elements (CREs) function in stress regulation, many more CREs remain to be discovered. In addition, the plant stress cis-regulatory code, i.e., how CREs work independently and/or in concert to specify stress-responsive transcription, is mostly unknown. On the basis of gene expression patterns under multiple stresses, we identified a large number of putative CREs (pCREs) in Arabidopsis thaliana with characteristics of authentic cis-elements. Surprisingly, biotic and abiotic responses are mostly mediated by two distinct pCRE superfamilies. In addition, we uncovered cis-regulatory codes specifying how pCRE presence and absence, combinatorial relationships, location, and copy number can be used to predict stress-responsive expression. Expression prediction models based on pCRE combinations perform significantly better than those based on simply pCRE presence and absence, location, and copy number. Furthermore, instead of a few master combinatorial rules for each stress condition, many rules were discovered, and each appears to control only a small subset of stress-responsive genes. Given there are very few documented interactions between plant CREs, the combinatorial rules we have uncovered significantly contribute to a better understanding of the cis-regulatory logic underlying plant stress response and provide prioritized targets for experimentation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Elementos de Resposta/fisiologia , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição/genética
10.
Nucleic Acids Res ; 37(17): e117, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19586935

RESUMO

Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address this issue and demonstrate that hybridization with mismatch nucleotides (HWMMN) occurs in all SNP probe-sets and has a critical effect on the estimation of allelic concentrations (ACs). We study sequence binding through binding free energy and then binding affinity, and develop a probe intensity composite representation (PICR) model. The PICR model allows the estimation of ACs at a given SNP through statistical regression. Furthermore, we demonstrate with cell-line data of known true copy numbers that the PICR model can achieve reasonable accuracy in copy number estimation at a single SNP locus, by using the ratio of the estimated AC of each sample to that of the reference sample, and can reveal subtle genotype structure of SNPs at abnormal loci. We also demonstrate with HapMap data that the PICR model yields accurate SNP genotype calls consistently across samples, laboratories and even across array platforms.


Assuntos
DNA/química , Variação Genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos/química , Polimorfismo de Nucleotídeo Único , Alelos , Pareamento Incorreto de Bases , Genótipo , Modelos Lineares , Reprodutibilidade dos Testes
11.
Genetics ; 179(1): 637-50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18458106

RESUMO

Genes are the functional units in most organisms. Compared to genetic variants located outside genes, genic variants are more likely to affect disease risk. The development of the human HapMap project provides an unprecedented opportunity for genetic association studies at the genomewide level for elucidating disease etiology. Currently, most association studies at the single-nucleotide polymorphism (SNP) or the haplotype level rely on the linkage information between SNP markers and disease variants, with which association findings are difficult to replicate. Moreover, variants in genes might not be sufficiently covered by currently available methods. In this article, we present a gene-centric approach via entropy statistics for a genomewide association study to identify disease genes. The new entropy-based approach considers genic variants within one gene simultaneously and is developed on the basis of a joint genotype distribution among genetic variants for an association test. A grouping algorithm based on a penalized entropy measure is proposed to reduce the dimension of the test statistic. Type I error rates and power of the entropy test are evaluated through extensive simulation studies. The results indicate that the entropy test has stable power under different disease models with a reasonable sample size. Compared to single SNP-based analysis, the gene-centric approach has greater power, especially when there is more than one disease variant in a gene. As the genomewide genic SNPs become available, our entropy-based gene-centric approach would provide a robust and computationally efficient way for gene-based genomewide association study.


Assuntos
Genes/genética , Predisposição Genética para Doença/genética , Variação Genética , Genômica/métodos , Modelos Genéticos , Incerteza , Simulação por Computador , Genótipo , Haplótipos/genética , Humanos , Teoria da Informação
12.
Curr Genomics ; 8(5): 307-22, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19384427

RESUMO

Detecting the patterns of DNA sequence variants across the human genome is a crucial step for unraveling the genetic basis of complex human diseases. The human HapMap constructed by single nucleotide polymorphisms (SNPs) provides efficient sequence variation information that can speed up the discovery of genes related to common diseases. In this article, we present a generalized linear model for identifying specific nucleotide variants that encode complex human diseases. A novel approach is derived to group haplotypes to form composite diplotypes, which largely reduces the model degrees of freedom for an association test and hence increases the power when multiple SNP markers are involved. An efficient two-stage estimation procedure based on the expectation-maximization (EM) algorithm is derived to estimate parameters. Non-genetic environmental or clinical risk factors can also be fitted into the model. Computer simulations show that our model has reasonable power and type I error rate with appropriate sample size. It is also suggested through simulations that a balanced design with approximately equal number of cases and controls should be preferred to maintain small estimation bias and reasonable testing power. To illustrate the utility, we apply the method to a genetic association study of large for gestational age (LGA) neonates. The model provides a powerful tool for elucidating the genetic basis of complex binary diseases.

13.
Planta ; 223(3): 492-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16160848

RESUMO

In many species, environmental stress reduces plant fertility. In Arabidopsis thaliana, a significant fraction of this reduction in plant fertility results from ovule abortion and embryo senescence. In this species, environmental conditions were identified that induced 94% of the developing ovules to either undergo stress-induced ovule abortion or embryo senescence (Sun et al. Plant Physiol 135:2358-2367, 2004). Following salt stress, physiological and anatomical changes were first detected in the female gametophyte of an aborting ovule. Two to four hours after a period of salt stress that induces most ovules to abort, the mitochondrial membrane potential dissipated. Subsequently, cells in the gametophyte accumulated reactive oxygen species, which are known to be molecules that promote programmed cell death (PCD). Because mitochondria often play an important role in PCD, these organelles were closely examined for changes in structure. Although the anatomy of mitochondria varied, reproducible changes in mitochondria structure were not observed. Nonetheless, other changes in ultrastructure were found. In some aborting gametophytes, concentric rings of endoplasmic reticulum were formed. In a fraction of the aborting ovules, cytoplasmic contents and organelles were invaginated into the vacuole. Even in cryofixed sections, many of these bodies appeared indistinct, which is consistent with the degradation of their contents.


Assuntos
Arabidopsis/embriologia , Membranas Mitocondriais/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/ultraestrutura , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Morte Celular/fisiologia , Retículo Endoplasmático/ultraestrutura , Potenciais da Membrana , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Sementes/fisiologia , Cloreto de Sódio/metabolismo , Vacúolos/ultraestrutura
14.
Planta ; 222(4): 632-42, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16133218

RESUMO

Environmental stress dramatically reduces plant reproduction. Previous results showed that placing roots in 200 mM NaCl for 12 h caused 90% of the developing Arabidopsis ovules to abort (Sun et al. in Plant Physiol 135:2358-2367, 2004). To discover the molecular responses that occur during ovule abortion, gene expression was monitored using Affymetrix 24k genome arrays. Transcript levels were measured in pistils that were stressed for 6, 12, 18, and 24 h, then compared with the levels in healthy pistils. Over the course of this experiment, a total of 535 salt-responsive genes were identified. Cluster analysis showed that differentially expressed genes exhibited reproducible changes in expression. The expression of 65 transcription factors, some of which are known to be involved in stress responses, were modulated during ovule abortion. In flowers, salt stress led to a 30-fold increase in Na+ ions and modest, but significant, decreases in the accumulation of other ions. The expression of cation exchangers and ion transporters were induced, presumably to reestablish ion homeostasis following salt stress. Genes that encode enzymes that detoxify reactive oxygen species (ROS), including ascorbate peroxidase and peroxidase, were downregulated after ovules committed to abort. These changes in gene expression coincided with the synthesis of ROS in female gametophytes. One day after salt stress, ROS spread from the gametophytes to the maternal chalaza and integuments. In addition, genes encoding proteins that regulate ethylene responses, including ethylene biosynthesis, ethylene signal transduction and ethylene-responsive transcription factors, were upregulated after stress. Hypotheses are proposed on the basis of this expression analysis, which will be evaluated further in future experiments.


Assuntos
Arabidopsis/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Meio Ambiente , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Equilíbrio Hidroeletrolítico
15.
Plant Physiol ; 135(4): 2358-67, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15299130

RESUMO

Environmental stresses frequently decrease plant fertility. In Arabidopsis, the effect of salt stress on reproduction was examined using plants grown in hydroponic medium. Salt stress inhibited microsporogenesis and stamen filament elongation. Because plants grown in hydroponic media can be rapidly and transiently stressed, the minimum inductive treatment to cause ovule abortion could be determined. Nearly 90% of the ovules aborted when roots were incubated for 12 h in a hydroponic medium supplemented with 200 mm NaCl. The anatomical effects of salt stress on maternal organs were distinct from those in the gametophyte. A fraction of cells in the chalaza and integuments underwent DNA fragmentation and programmed cell death. While three-fourths of the gametophytes aborted prior to fertilization, DNA fragmentation was not detected in these cells. Those gametophytes that survived were fertilized and formed embryos. However, very few of these developing embryos formed seeds; most senesced during seed development. Thus, during seed formation, there were multiple points where stress could prematurely terminate plant reproduction. These decreases in fecundity are discussed with respect to the hypothesis of serial adjustment of maternal investment.


Assuntos
Arabidopsis/fisiologia , Flores/fisiologia , Arabidopsis/crescimento & desenvolvimento , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Fragmentação do DNA , Flores/citologia , Flores/crescimento & desenvolvimento , Reprodução , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...