Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 40(2): 595-605, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24078222

RESUMO

In the present study, three different copper (Cu) concentrations (control, 10 and 100 lM, respectively) and three incubation times (24, 48 and 96 h) were chosen to assess in vitro effect of Cu on lipid metabolism in hepatocytes of grass carp Ctenopharyngodon idellus. Increased glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and carnitine palmitoyltransferase I activities were observed in hepatocytes with increasing Cu concentration and exposure duration. Cu decreased mRNA levels of several lipogenic and lipolytic genes at 24 h. However, at 48 h, Cu down-regulated the process of lipogenesis but up-regulated that of lipolysis. The Cudriven up-regulation of lipolytic genes was maintained after 96 h and accompanied by a decreased intracellular triglyceride accumulation, while no effect on lipogenic genes was shown. Thus, 96-h Cu exposure induced lipid depletion, possibly due to the upregulation of lipolysis. Although in this process, lipogenesis might be up-regulated, it was not enough to compensate lipid consumption. Our study represents the first approach to concentration- and time-dependent in vitro effects of Cu on lipid metabolism of fish hepatocytes and provides new insights into Cu toxicity in fish at both enzymatic and molecular levels.


Assuntos
Carpas/metabolismo , Cobre/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetil-CoA Carboxilase/genética , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carpas/genética , Linhagem Celular , China , Cobre/administração & dosagem , Ácido Graxo Sintase Tipo I/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Pesqueiros , Expressão Gênica/efeitos dos fármacos , Glucosefosfato Desidrogenase/metabolismo , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Lipólise/efeitos dos fármacos , Lipólise/genética , PPAR alfa/genética , Fosfogluconato Desidrogenase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Poluentes Químicos da Água/administração & dosagem
2.
Gene ; 531(1): 53-63, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23988502

RESUMO

11 genes involved in lipid metabolism were cloned from liver of yellow catfish Pelteobagrus fulvidraco, including CPT 1A, CPT 1B, PPARα, PPARγ, SREBP-1, G6PD, 6PGD, FAS, acetyl-CoA ACCa, ACCb, and LPL. Phylogenetic analysis further identified these genes, and confirmed the classification and evolutionary status of yellow catfish. mRNA of all eleven genes was present in liver, muscle, mesenteric adipose, ovary and heart, but at varying levels. The present study will facilitate further studies on the regulation of lipid metabolism at the molecular level for the fish species.


Assuntos
Peixes-Gato/genética , Clonagem Molecular , Expressão Gênica , Metabolismo dos Lipídeos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Peixes-Gato/metabolismo , Feminino , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia
3.
Aquat Toxicol ; 136-137: 72-8, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23660017

RESUMO

The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) µg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu exposure indicated the tissue-specific regulatory effect of lipid metabolism following waterborne Cu exposure. To our knowledge, the present study provides, for the first time, evidence that waterborne chronic Cu exposure can disturb the normal processes of lipid metabolism at both the enzymatic and molecular levels, and in two tissues (the liver and adipose tissue), which serves to increase our understanding of the mechanisms underlying lipid metabolism during Cu exposure.


Assuntos
Peixes-Gato/metabolismo , Cobre/toxicidade , Indução Enzimática/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Reação em Cadeia da Polimerase em Tempo Real , Espectrofotometria , Estatísticas não Paramétricas
4.
Indian J Biochem Biophys ; 50(6): 554-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24772981

RESUMO

6-Phosphogluconate dehydrogenase (6-PGD, E.C.: 1.1.1.44) was purified and characterized from the hepatopancreas of grass carp (Ctenopharyngodon idella) for the first time. Grass carp represents the second largest aquaculture industry in the world after silver carp, constituting 14.7% of the world aquaculture production, with an average annual increase of 14% in China, mainly as a source of food. The purification procedure involved a single 2', 5'-ADP-Sepharose 4B affinity chromatographic step by using different elution buffers. The enzyme was purified 309-fold with a specific activity of 5.259 U/mg protein and yield of 68%. The purity and subunit molecular weights of the 6-PGD were checked on SDS-PAGE and purified enzyme showed a single band on the gel. The subunit molecular mass was 57 kDa, with an optimum pH, temperature and ionic strength at 7.96, 50 degrees C and 100 mM Tris-HCl, respectively. The Km values of 6-PGA and NADP+ were 0.019 and 0.0052 mM, respectively, while Vm of 6-PGA and NADP+ was 0.69 U/ml. Dissociation constants (Ki) for 6-PGA and NADP+ were 2.05 and 0.12 mM, respectively. NADPH inhibited the enzyme in a competitive manner and its Ki value was 0.032 mM. The Cu2+, Zn2+, Cd2+ and Al3+ showed inhibitory effects on the enzyme with IC50 values of 0.293, 0.099, 0.045 and 1.526 mM, respectively. All tested metals inhibited the enzyme in a competitive manner, indicating that these metals might be toxic even at low concentrations for the 6-PGD. As the fish is one of valuable foodstuff of animal sources for human consumption, under certain environmental conditions, metal ions accumulated in fish up to a lethal concentration may be harmful for human health. Therefore, it is impending to reduce the concentration of metal ions in contaminated lakes and rivers for fishery and also for human health.


Assuntos
Carpas , Hepatopâncreas/enzimologia , Fosfogluconato Desidrogenase/isolamento & purificação , Fosfogluconato Desidrogenase/metabolismo , Animais , Concentração de Íons de Hidrogênio , Cinética , Fosfatos/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA