Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2307410, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778499

RESUMO

The detection of monoamine neurotransmitters is of paramount importance as the neurotransmitters are the chemical messengers regulating the gut-brain axis (GBA). It requires real-time, ultrasensitive, and selective sensing of the neurotransmitters in the gastric/intestinal fluid. However, multi-components present in the gastric/intestinal fluid make sensing challenging to achieve in terms of ultra-high sensitivity and selectivity. Herein, an approach is introduced to utilize vanadium single atom catalytic (SAC) centers in van der Waals MoS2 (V-MoS2) to selectively detect real-time serotonin (5-HT) in artificial gastric/intestinal fluid. The synergetic effect of V-SACs and the surface S-bonds on the MoS2 surface, enables an extremely wide range of 5-HT detection (from 1 pM to 100 µM), with optimum selectivity and interference resistance. By combining density functional theory calculations and scanning transmission electron microscopy, it is concluded that the V-SACs embedded in the MoS2 network create active sites that greatly facilitate the charge exchange between the material and the 5-HT molecules. This result allows the 5-HT detection in GBA studies to be more reliable, and the material tunability provides a general platform to achieve real-time and multi-component detection of other monoamine neurotransmitters in GBA such as dopamine and norepinephrine.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38572786

RESUMO

The gut-brain axis (GBA) is an important information pathway connecting the brain, the central nervous system (CNS), and the gastrointestinal (GI) tract. On the one hand, gut microbiota can influence the function brain through GBA; on the other hand, the brain can also change the structural composition of gut microbiota via GBA. It contains a myriad of biosignals, such as monoamines, inflammatory cytokines, and macro-biomolecules, as the information carriers. Highly selective, sensitive, and reliable sensing techniques are essential to resolve the specific function of individual biosignals. This review summarizes the widely reported biosignals related to GBA and their functions, and organizes the latest sensing tools to provide feasible characterization ideas for GBA-related work. In addition, these low-cost, fast-responding sensors can also be used for early identification and diagnosis of GBA-related diseases (e.g., depression). Finally, the problems and deficiencies in this field are pointed out to provide a reference for the orientation of researchers in the sensing field.

3.
J Am Chem Soc ; 146(8): 5333-5342, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38369932

RESUMO

Electrochemical CO2 reduction reaction (CO2RR) in acid can solve alkalinity issues while highly corrosive and reductive acidic electrolytes usually cause catalyst degradation. Inhibiting catalyst degradation is crucial for the stability of acidic CO2RR. Here, we reveal the microenvironment changes of dynamic Bi-based catalysts and develop a pulse chronoamperometry (CA) strategy to improve the stability of acidic CO2RR. In situ fluorescence mappings show that the local pH changes from neutral to acid, and the in situ Raman spectra reveal the dynamic evolution of interfacial water structures in the microenvironment. We propose that the surface charge properties of dynamic catalysts affect the competitive adsorption of K+ and protons, thereby causing the differences in local pH and CO2RR intermediate adsorption. We also develop a pulse CA strategy to reactivate catalysts, and the stability of acidic CO2RR is improved by 2 orders of magnitude for 100 h operation, which is higher than most reports on the stability of acidic CO2RR. This work gives insights on how microenvironment changes affecting the stability of acidic CO2RR, and provides guidance for designing stable catalysts in acidic electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...