Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mater Horiz ; 9(12): 3057-3069, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36239123

RESUMO

Conductive hydrogels are excellent candidates for the next-generation wearable materials and are being extensively investigated for their potential use in health monitoring devices, human-machine interfaces, and other fields. However, their relatively low mechanical strength and performance degradation due to swelling have presented challenges in their practical application. Inspired by the multiscale heterogeneous architecture of biological tissue, a dynamic cross-linked, ultra-tough, and high-sensitivity hydrogel with a swelling resistance characteristic was fabricated by the principle of multiple non-covalent interaction matching and a step-by-step construction strategy. A heterogeneous structure was constructed by the combination of a 'soft' hydrophobic-conjugated micro-region structural domain with inter/intra-molecular hydrogen bonding and π-π stacking along with 'rigid' cross-linking via strong ionic coordination interactions. Reversible cross-linking synergies and variations in the content of rigid and flexible components guaranteed the hydrogel to undergo flexible and efficient modulation of the structures and gain excellent mechanics, including elongation at break (>2000%), toughness (∼60 MJ m-3), and recovery (>88%). Notably, hydrogels displayed good anti-swelling properties even in solutions with different pH (pH 2-11) and solvents. Moreover, the hydrogel further exhibited fast response (47.4 ms) and high sensitivity due to the presence of dynamic ions (Fe3+, Na+, and Cl-); therefore, it was assembled into a sensor to detect various human motions and used as a signal transmitter for the encryption and decryption of information according to Morse code. This study provides basis for the development of a variety of robust and flexible conductive hydrogels with multifunctional sensing applications in next-generation wearable devices.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Humanos , Condutividade Elétrica , Movimento (Física) , Edema
3.
Langmuir ; 38(29): 8964-8974, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35839381

RESUMO

Polydopamine (PDA), with similar chemical and physical properties to eumelanin, is a typical artificial melanin material. With various functional groups, good biocompatibility, and photothermal conversion ability, PDA attracts great interest and is extensively studied. Endowing PDA with a porous structure would increase its specific surface area, therefore would significantly improve its performance in different application fields. However, creating abundant pores within the PDA matrix is a great challenge. Herein, a self-assembly/etching method is proposed to prepare hierarchically porous mesostructured PDA nanospheres. The oxidative polymerization of dopamine and hydrolysis of tetraethyl orthosilicate were coupled to co-assemble with a polyelectrolyte-surfactant complex template to form a mesostructured PDA/silicate nanocomposite. After removing templates and etching of silica, hierarchically porous PDA nanospheres were obtained with specific surface area and pore volume as high as 302 m2 g-1 and 0.67 cm3 g-1, respectively. Moreover, via subsequent carbonization and silica-etching, ordered mesoporous N-doped carbon microspheres (OMCMs) with ∼2 nm ordered mesopores and ∼20 nm secondary nanopores could be obtained. When used as electrodes of supercapacitors, the OMCMs exhibited a specific capacity of 341 F g-1 at 1 A g-1 with excellent rate capability, and the OMCM-based symmetric supercapacitor delivered a high energy density of 14.1 W h kg-1 at a power density of 250 W kg-1 and minor capacitance fading (only 2.6%) after 10,000 cycles at 2 A g-1.


Assuntos
Carbono , Nanosferas , Carbono/química , Indóis , Polímeros , Porosidade , Dióxido de Silício
4.
Polymers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458271

RESUMO

Understanding the structural evolution process after the yielding of networks in polymer nanocomposites can provide significant insights into the design and fabrication of high-performance nanocomposites. In this work, using hydroxyl-terminated 1,4-polybutadiene (HTPB)/organo-clay nanocomposite gel as a model, we explored the yielding and recovery process of a polymer network. Linear rheology results revealed the formation of a nanocomposite gel with a house-of-cards structure due to the fully exfoliated 6 to 8 wt% organo-clays. Within this range, nonlinear rheologic experiments were introduced to yield the gel network, and the corresponding recovery processes were monitored. It was found that the main driving force of network reconstruction was the polymer-clay interaction, and the rotation of clay sheets played an important role in arousing stress overshoots. By proton double-quantum (1H DQ) NMR spectroscopy, residual dipolar coupling and its distribution contributed by HTPB segments anchored on clay sheets were extracted to unveil the physical network information. During the yielding process of a house-of-cards network, e.g., 8 wt% organo-clay, nearly one-fourth of physical cross-linking was broken. Based on the rheology and 1H DQ NMR results, a tentative model was proposed to illustrate the yielding and recovery of the network in HTPB/organo-clay nanocomposite gel.

5.
RSC Adv ; 12(13): 8145-8153, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424729

RESUMO

Amorphous polymer-based room temperature phosphorescence (RTP) materials exhibiting tunable emission colors have received tremendous attention and are extremely challenging to prepare. Herein, polyacrylamide-based RTP materials with tunable multicolor emission were prepared via copolymerizing phosphor with concentration dependent luminescence colors and acrylamide with different molar ratios. The hydrogen bonding interactions and chemically crosslinked structures in these polymers effectively restrict the mobility of phosphors and activate efficient RTP emission. The molar ratio of phosphor and acrylamide has a significant influence on the photophysical properties of these polymers, which can be used to fabricate multicolor materials. In addition, the RTP intensity decreases with increasing humidity due to the disassociation of hydrogen bonding by adsorption of water, manifesting as a humidity sensor. Benefiting from the distinguishable RTP lifetimes and the responsiveness to humidity, triple encoding for information encryption is successfully realized.

6.
J Colloid Interface Sci ; 617: 32-43, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35255396

RESUMO

As an important heterogeneous catalyst, Titanium Silicalite-1 (TS-1) zeolite has been widely applied in various catalytic processes. Here, hierarchical TS-1 single-crystals were successfully synthesized by a steam-assisted crystallization strategy using hierarchically porous titanium-containing silica (Ti-NKM-5) as a precursor. Due to the presence of large mesopores (10-40 nm), the microporous structure-directing agents penetrated the interstitial structure of silica particles, inducing the dissolution and crystallization process. During crystallization, the generated nanocrystals grew together to form a hierarchical structure. Titanium was fully incorporated into the zeolite framework, and no extra-framework anatase was formed. Compared with the traditional microporous TS-1 zeolite, the synthesized hierarchical TS-1 single-crystal exhibited superior catalytic performance in oxidative desulfurization (ODS) of dibenzothiophene (DBT) and 4, 6-dimethyl dibenzothiophene (4, 6-DMDBT) owing to the hierarchically porous and anatase-free structure. The recycling test revealed the durability of the obtained hierarchical TS-1 catalyst under moderate reaction conditions.

7.
J Colloid Interface Sci ; 608(Pt 1): 386-395, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626984

RESUMO

Developing cost-effective and stable non-noble electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is now the critical issue for large-scale application of zinc-air batteries. Here, we presented a simple method to synthesize highly dispersed cobalt manganate spinel nanodots in-situ embedded in amine-functionalized carbon black. Silane coupling agent 3-aminopropyltriethoxysilane (APTES) played dual roles in the preparation: (1) to achieve amine-functionalization of carbon support; (2) as weak alkali to precipitate metal hydroxides which were then converted to spinel nanodots after mild calcination. The hydrophilicity of the carbon substrate was enhanced by amine modification from APTES to disperse metal oxide evenly, and the electrochemical activity was promoted through the strong interface interaction between embedded spinel nanodots and carbon substrate during the calcination process. As expected, the CoMn2O4/C-NH2-300 catalyst exhibited satisfactory bifunctional catalytic performance for both ORR and OER with an ΔE (E1/2-Ej10) = 0.75 V, which was lower than most state-of-the-art catalysts. In addition, CoMn2O4/C-NH2-300 as a cathode also exhibited remarkable zinc-air battery performance in alkaline solution. This strategy of APTES as a bifunctional coupling agent provided a novel way to design and explore highly active, durable, and cost-effective catalysts for renewable energy conversion and storage.

8.
J Magn Reson ; 332: 107067, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634650

RESUMO

Direct polarization using a single pulse is the simplest excitation scheme in nuclear magnetic resonance (NMR) experiments, capable of quantifying various compositions in many materials applications. However, this single-pulse excitation generally gives rise to NMR spectra with a severely distorted baseline due to the background signals arising from probe components and/or due to the radio-frequency (RF) acoustic ringing, especially in low-γ nuclei and wide-line NMR. In this work, a triple-pulse excitation scheme is proposed to simultaneously suppress the background signals and eliminate the RF acoustic ringing. The acoustic ringing is cancelled through subtraction in any two consecutive scans by alternating the receiver phase while keeping the phase of the pulse right before acquisition the same. While the triple-pulse scheme generates an additional flip-angle dependent scaling to the traditional single-pulse excitation profile in such a way that the scaling is one when the flip-angle is ∼90° but becomes almost zero when the flip-angle is very small. Therefore, the background signals arising from the materials outside the sample coil experiencing a very small fraction of the RF flip-angles can be effectively suppressed. Various samples containing 1H and quadrupolar nuclei (17O, 25Mg, and 23Na) have been used to demonstrate the effectiveness of this newly proposed triple-pulse excitation in terms of suppressing the background signals and eliminating the acoustic ringing effects.

9.
Mater Horiz ; 8(11): 3096-3104, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515280

RESUMO

Intelligent hydrogels that simultaneously exhibit excellent toughness, self-healing ability and photoelectronic responsiveness are in high demand but are greatly challenging to prepare. Inspired by the hierarchical structure of fluorescent proteins in jellyfish and biomembranes in nature, herein, a facile and universal all-in-one strategy is demonstrated to construct fluorescent, electrically responsive and ultratough self-healing hydrogels via aqueous self-assembly of polyelectrolyte-surfactant micelles with hierarchical structures and functionality. The self-assembled 2-ureido-4-[1H]-pyrimidone (UPy) hydrophobic core containing reversible physical crosslinks embedded in micelles leads to a durable network structure with excellent toughness and self-healing ability. Moreover, dramatically enhanced fluorescence emission is obtained due to the formation of nanoclusters with electron-rich moieties that show restricted intramolecular motion induced by hydrogen bonding networks from UPy dimer aggregation. The micelle-incorporated sulfonic acid groups mimic the function of biological membrane proteins that deftly control the micelle size, leading to electro-responsiveness, enhanced toughness and fluorescence emission.

10.
ACS Macro Lett ; 10(5): 510-517, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35570774

RESUMO

Nature embraces an intriguing strategy to create high-performance biomaterials, such as spider silk which presents an unparalleled combination of stiffness, tensile strength, and toughness via hierarchical structures. However, to fabricate synthetic polymers with such excellent properties remains a challenging task. Inspired by the integration of multiblock backbone and densely H-bonding assemblies in spider silk as well as the delicate iron-catecholate complexes in mussel byssus, we proposed a novel molecular design with multifunctional block modules to obtain polymer materials that exhibit excellent mechanical property, self-healing ability, and reprocessability. It was achieved by introducing reversible iron-catechol (DOPA-Fe3+) cross-links and quadruple H-bonds bearing 2-ureido-4-[1H]-pyrimidinone (UPy) dimers as multifunctional blocks into a segmented polyurethane backbone with urethane blocks and semicrystalline polycaprolactone (PCL) blocks. These two types of dynamic cross-linking knots served as the sacrificial bonds to dissipate energy efficiently under external stress burden, endowing the dual physical cross-linked networks with increased toughness and breaking elongation. Moreover, the DOPA-Fe3+ complexes could increase the crystallization of PCL, leading to remarkably enhanced Young's modulus and tensile strength. Solid-state NMR revealed the formation of quadruple H-bonds in UPy dimers and the presence of DOPA-Fe3+ complexes, which restricted the mobility of the mobile phase and enhanced the crystallinity of the PCL domain. This work provides a feasible way to develop bioinspired materials with self-healable and reprocessable features, in addition to balanced enhancement of both stiffness and toughness.


Assuntos
Polímeros , Poliuretanos , Di-Hidroxifenilalanina , Ferro , Polímeros/química , Poliuretanos/química , Seda
11.
ACS Appl Mater Interfaces ; 12(49): 55290-55298, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232107

RESUMO

Thermoresponsive hydrogel-based actuators are highly important for fundamental research and industrial applications, while the preparation of temperature-driven bilayer hydrogel actuators with rapid response to bend and recover properties remains a challenge. To date, most temperature-driven bilayer hydrogel actuators are based on polymers only with a lower critical solution temperature (LCST) or with an upper critical solution temperature (UCST), which need more time to bend and recover just in a small range of bending angle. Herein, we propose a new strategy to design and synthesize a fully temperature-driven bilayer hydrogel actuator, which consists of a poly(N-acryloyl glycinamide) (NAGA) layer with a UCST-type volume phase change and a poly(N-isopropyl acrylamide) (NIPAM)-Laponite nanocomposite layer with an LCST-type volume phase change. Due to the complementary UCST and LCST behavior of the two selected polymers, both layers have opposite thermoresponsive swelling and shrinkage properties at low and high temperatures; this imbues the hydrogel actuator with rapid thermoresponsive bending and recovery ability, as well as a large bending angle. In addition, the incorporation of Laponite nanosheets in PNIPAM layer not only improves the mechanical property of actuators but also provides the excellent bonding ability of the two-layer interface, which prevents delamination caused by excessive local stress on the interface during the bending process. Thanks to high-performance behavior, the actuator can act as an effective and sensitive actuator, such as a gripper to capture, transport, and release an object, or as an electrical circuit switch to turn on and off a light-emitting diode (LED). Overall, such hydrogel actuator may provide new insights for the design and fabrication of artificial intelligence materials.

12.
ACS Appl Mater Interfaces ; 12(21): 23995-24006, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32329603

RESUMO

The study on the design and preparation of oxygen reduction reaction (ORR) electrocatalysts with high efficiency is currently attracting great concern. Among different types of catalysts, heteroatom-doped carbon-based catalysts have exhibited promising potential, and the exploration of optimized matching of the doping elements is crucial to the design and fabrication of this category of catalysts. Herein, by annealing commercially available and cost-effective precursors, Fe-N-S codoped graphene-like carbon nanosheet catalysts were prepared. The atomically dispersed Fe atoms coordinated with the N atoms to form FeN4 sites as proved by X-ray absorption spectroscopy. By facile modulation of the relative amount of the precursors, the contents of thiophene-S (Th-S) and Fe-N4 sites could be tuned and a series of catalysts with different Th-S/Fe ratios were prepared. The doped sulfur exhibited an enhancement effect on ORR performance, and strikingly, the enhancement efficiency could be optimized by fine modulation of the Th-S/Fe ratio in the catalysts. Furthermore, it was found that when the Th-S/Fe ratio reached an optimal value of 1.8, the ORR performance was significantly boosted, especially in acidic media. The experimental data were supported by density functional theory calculation results, which indicated that the ORR overpotential of the S2(FeN4) configuration model (corresponding to the Th-S/Fe ratio of 2) was lower than that of S3(FeN4) and S1(FeN4). The optimized catalyst (denoted as FeN/SNC-900-3) displayed highly efficient ORR activity in both alkaline and acidic media. In alkaline media, the half-wave potential was 49 mV more positive than that of the commercial Pt/C catalyst, and in acidic media, the half-wave potential was close to that of Pt/C. Moreover, the stability of FeN/SNC-900-3 was outstanding, and the relative current density showed only a slight decay in both alkaline and acidic media after 40,000 s. A primary Zn-air battery with FeN/SNC-900-3 as the cathode catalyst exhibited a high peak power density of up to 153 mW cm-2 and superior cycling stability over 200 cycles.

13.
Langmuir ; 36(8): 1851-1863, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036669

RESUMO

Hierarchically porous materials have attracted great attention because of their potential applications in the fields of adsorption, catalysis, and biomedical systems. The art of manipulating different templates that are used for pore construction is the key to fabricating desired hierarchically porous structures. In this feature article, the polyelectrolyte-surfactant mesomorphous complex templating (PSMCT) approach, which was first developed by our group, is elaborated on. During the organic-inorganic self-assembly, the mesomorphous complex of the polyelectrolyte and oppositely charged surfactants would undergo in situ phase separation, which is the key to fabricating hierarchically porous materials. The recent progress in the utilization of the PSMCT method for the synthesis of hierarchically porous materials with tunable morphologies, mesophases, pore structures, and compositions is reviewed. Meanwhile, the functions of the hierarchically porous materials synthesized by the PSMCT method and their applications in adsorption, catalysis, drug delivery, and nanocasting are also briefly summarized.

14.
Nat Commun ; 10(1): 5293, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757964

RESUMO

Spider silks show unique combinations of strength, toughness, extensibility, and energy absorption. To date, it has been difficult to obtain spider silk-like mechanical properties using non-protein approaches. Here, we report on an artificial spider silk produced by the water-evaporation-induced self-assembly of hydrogel fibre made from polyacrylic acid and silica nanoparticles. The artificial spider silk consists of hierarchical core-sheath structured hydrogel fibres, which are reinforced by ion doping and twist insertion. The fibre exhibits a tensile strength of 895 MPa and a stretchability of 44.3%, achieving mechanical properties comparable to spider silk. The material also presents a high toughness of 370 MJ m-3 and a damping capacity of 95%. The hydrogel fibre shows only ~1/9 of the impact force of cotton yarn with negligible rebound when used for impact reduction applications. This work opens an avenue towards the fabrication of artificial spider silk with applications in kinetic energy buffering and shock-absorbing.

15.
Nat Commun ; 10(1): 5117, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712651

RESUMO

The integration of luminescence and chirality in easy-scalable metal-organic frameworks gives rise to the development of advanced luminescent sensors. To date, the synthesis of chiral metal-organic frameworks is poorly predictable and their chirality primarily originates from components that constitute the frameworks. By contrast, the introduction of chirality into the pores of metal-organic frameworks has not been explored to the best of our knowledge. Here, we demonstrate that chirality can be introduced into an anionic Zn-based metal-organic framework via simple cation exchange, yielding dual luminescent centers comprised of the ligand and Tb3+ ions, accompanied by a chiral center in the pores. This bifunctional material shows enantioselectivity luminescent sensing for a mixture of stereoisomers, demonstrated for Cinchonine and Cinchonidine epimers and amino alcohol enantiomers, from which the quantitative determination of the stereoisomeric excess has been obtained. This study paves a pathway for the design of multifunctional metal-organic framework systems as a useful method for rapid sensing of chiral molecules.

16.
Macromol Rapid Commun ; 40(19): e1900313, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31393644

RESUMO

As an emerging class of dynamic cross-linked network, vitrimers have attracted much attention due to the combination of mechanical advantages of thermosets and recyclability of thermoplastics at an elevated temperature. In particular, most vitrimers with multi-shape memory properties usually involve more than one thermal transition or molecular switch, which might pose a challenge for facile sample fabrication and potentially limits their applications. In pursuit of a more universal and simple route, utilizing commercially available and inexpensive reagents to prepare shape-memory vitrimers with dual cross-linked network from vinyl monomer-derived prepolymers is reported here. Copolymerization of desired vinyl monomers gives prepolymers containing carboxyl and zinc carboxylate groups, which are later converted into vitrimers in a single step by post-curing with diglycidylether of bisphenol A. The Zn2+ ions can not only act as physical crosslinking points through ionic coordination interactions, thus providing the triple-shape-memory properties, but also play the role of catalyst to activate transesterification in the dynamic covalent network. This new self-catalyzed vitrimer has excellent transesterification efficiency, triple-shape-memory properties, and can be sufficiently healed and reprocessed at an elevated temperature. The proposed molecular design of self-catalyzed materials opens a new avenue toward commercially relevant fabrication of high-performance vitrimers with multiple shape-memory properties.


Assuntos
Ácidos Carboxílicos/química , Reagentes de Ligações Cruzadas/química , Polímeros/química , Zinco/química , Catálise , Reagentes de Ligações Cruzadas/síntese química , Estrutura Molecular , Polimerização , Polímeros/síntese química , Temperatura
17.
ACS Omega ; 4(1): 1443-1448, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459411

RESUMO

Hierarchically porous silica KIT-6 and SBA-15 mesostructures were successfully synthesized by using a mesomorphous complex of a nonionic triblock copolymer (pluronic P123) and an anionic polyelectrolyte (polyacrylic acid) as the dynamic template. The obtained mesoporous silica materials possessed both ordered mesopores (∼7 nm) and nanopores (∼15-50 nm), and the long-range order of the mesophase was not perturbed by the embedded larger secondary nanopores. Moreover, hierarchically porous silica KIT-6 exhibited enhanced adsorption capacity in enzyme and protein immobilization, which was attributed to the hierarchically porous structure.

18.
Carbohydr Polym ; 219: 191-200, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151516

RESUMO

Densely H-bonding assemblies are the key strategy found by nature to enhance the rupture strength of natural polymers without sacrificing their toughness, such as spider silk, while it still remains a great challenge using such intriguing strategy to prepare high-performance synthesized polymer or biopolymer enhanced polymer nanocomposites. To address this challenge, we report here a bio-inspired strategy using densely H-bonding assembly for facile fabrication of high performance polyurethane (PU) nanocomposites reinforced by hydroxyl-rich cellulose nanocrystals (CNCs) functionalized with 2-ureido-4-[1 H]-pyrimidinone motifs (CNC-UPy) containing self-complementary hydrogen bonds. These PU/CNC-UPy nanocomposites showed remarkably improved mechanical strength without sacrificing the elongation at break and toughness compared to pure PU matrix. Differential scanning calorimetry(DSC) results indicated that CNC-UPy could induce the formation of long range ordering of hard segment domains, due to the strong hydrogen bonding interactions between UPy motifs attached on CNC-UPy and PU matrix. Furthermore, wide angle X-ray diffraction (WAXD) measurements demonstrated that the strain-induced crystallization (SIC) was enhanced significantly by introducing CNC-UPy into PU, leading to a large stress at break. The enhanced interfacial H-bonding interactions between CNC and PU though UPy anchoring could overcome the inherent trade-off between the stiffness and toughness of polymer composites. The proposed bio-inspired strategy using densely H-bonding assembly will be with more extensive application prospects.

19.
Colloids Surf B Biointerfaces ; 177: 149-159, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30721791

RESUMO

Conducting hydrogels have attracted attention as a special functional class of smart soft materials and have found applications in various advanced fields. However, acquiring all the characteristics such as conductivity, adequate adhesiveness, self-healing ability, stretchability, biocompatibility, and stimulating deformation responsiveness still remains a challenge. Inspired by the mechanism of bioadhesion in marine mussels, a multifunctional nanocomposite hydrogel with excellent adhesiveness to a broad range of substrates including human skin was developed with the help of synergistic multiple coordination bonds between clay, poly(N-isopropylacrylamide) (PNIPAM), and polydopamine nanoparticles (PDA-NPs). The prepared hydrogel showed controllable near-infrared (NIR) responsive deformation after incorporation of PDA-NPs as highly effective photothermal agents in the thermo-sensitive PNIPAM network. Meanwhile, the fabricated nanocomposite hydrogels showed excellent stretchability and conductivity, which make them attractive material candidates for application in various fields, such as electronic skin, wearable devices, and so on.


Assuntos
Resinas Acrílicas/química , Argila/química , Hidrogéis/química , Indóis/química , Nanocompostos/química , Polímeros/química , Resinas Acrílicas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condutividade Elétrica , Hidrogéis/farmacologia , Indóis/farmacologia , Luz , Camundongos , Células NIH 3T3 , Imagem Óptica , Polímeros/farmacologia , Temperatura
20.
Nat Commun ; 10(1): 768, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770816

RESUMO

The exciting applications of molecular motion are still limited and are in urgent pursuit, although some fascinating concepts such as molecular motors and molecular machines have been proposed for years. Utilizing molecular motion in a nanoplatform for practical application has been scarcely explored due to some unconquered challenges such as how to achieve effective molecular motion in the aggregate state within nanoparticles. Here, we introduce a class of near infrared-absorbing organic molecules with intramolecular motion-induced photothermy inside nanoparticles, which enables most absorbed light energy to dissipate as heat. Such a property makes the nanoparticles a superior photoacoustic imaging agent compared to widely used methylene blue and semiconducting polymer nanoparticles and allow them for high-contrast photoacoustic imaging of tumours in live mice. This study not only provides a strategy for developing advanced photothermal/photoacoustic imaging nanoagents, but also enables molecular motion in a nanoplatform to find a way for practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...