Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 9: 778579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127642

RESUMO

Hydrogenolysis of glycerol to propylene glycol represents one of the most promising technologies for biomass conversion to chemicals. However, conventional hydrogenolysis processes are often carried out under harsh H2 pressures and temperatures, leading to intensive energy demands, fast catalyst deactivation, and potential safety risks during H2 handling. Catalytic transfer hydrogenolysis (CTH) displays high energy and atom efficiency. We have studied a series novel solid catalysts for CTH of glycerol. In this work, detailed studies have been conducted on energy optimization, tech-economic analysis, and environmental impact for both processes. The key finding is that relatively less energy demands and capital investment are required for CTH process. CO2 emission per production of propylene glycol is much lower in the case of transfer hydrogenolysis. The outcome of this study could provide useful information for process design and implementation of novel hydrogenolysis technologies for other energy and environmental applications.

2.
Dalton Trans ; 49(7): 2151-2158, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31994565

RESUMO

By employing X(CH2CH2S-)2 (X = S, tpdt; X = O, opdt; X = NPh, npdt) as bridging ligands, four thiolate-bridged dinickel complexes supported by phosphine ligands, [(dppe)Ni(µ-1SSS':2SS-tpdt)Ni(dppe)][PF6]2 (1[PF6]2, dppe = Ph2P(CH2)2PPh2), [(dppe)Ni(µ-1SSN:2SS-npdt)Ni(dppe)][PF6]2 (2[PF6]2) and [(dppe)Ni(t-Cl)(µ-1SSX:2SS-C4H8S2X)Ni(dppe)][PF6] (3[PF6], X = S; 4[PF6], X = O) were facilely obtained by the salt metathesis reaction. These four thiolate-bridged dinickel complexes have all been fully characterized by spectroscopic methods and X-ray crystallography. In 2[PF6]2, elongation of the Ni-N bond distance, possibly caused by steric hindrance, indicates that the pendant nitrogen group shuttles between the two nickel centers in solution, which is evidenced by 31P{1H} NMR spectroscopic results. Furthermore, these thiolate-bridged dinickel complexes have all been proved to be electrocatalysts for proton reduction to hydrogen. Notably, complex 2[PF6]2 featuring a pendant amine group in the secondary coordination sphere exhibits the best catalytic activity at a relatively low overpotential.


Assuntos
Aminas/química , Complexos de Coordenação/química , Técnicas Eletroquímicas , Níquel/química , Compostos de Sulfidrila/química , Catálise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
3.
Dalton Trans ; 48(45): 16827-16843, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31646315

RESUMO

Epoxidation of olefins stands out as a crucial class of reactions and is of great interest in academic research and industry due to the production of various important fine chemicals and intermediates. Manganese complexes have the potential to catalyze the epoxidation of olefins with high efficiency. Magnetic nanocatalysts have attracted significant attention for immobilizing homogeneous transition metal complexes. Easy separation by external magnetic fields, nontoxicity, and a core shell structure are the main advantages of magnetic nanocatalysts over other heterogeneous catalysts. The method of functionalizing magnetic nanoparticles and of anchoring homogeneous metal complexes has significant effects on catalytic performance. Therefore, a critical review of recent research progress on manganese complexes' immobilization on magnetic nanoparticles for liquid phase olefin epoxidation is necessary. In this work, magnetic nanoparticles are categorized according to their preparation procedures and structures. The physical/chemical properties, catalytic performance for olefin epoxidation, reusability and plausible reaction mechanisms will be discussed, in an attempt to unravel the structure-function relationship and to guide the future study of MNPs' design for olefin epoxidations.

4.
J Org Chem ; 83(5): 2858-2868, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29384677

RESUMO

A base-controlled regiodivergent azidation of trifluoromethyl alkenyl triflates providing either (E)-3-azido-1-aryl-4,4,4-trifluorobut-1-ene (CF3-containing allyl azides) or (Z)-1-azido-1-aryl-4,4,4-trifluorobut-1-ene (CF3-containing alkenyl azides) is described. Catalyzed by Et3N, the azidation of trifluoromethyl alkenyl triflates with TMSN3 gave CF3-containing allyl azides. On the other hand, using stoichiometric DBU, the regioisomeric azidation products, CF3-containing alkenyl azides, were obtained in good yield. A further transformation for CF3-containing amines, triazoles, and azirines highlights the practical applicability of this transition-metal-free protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...