Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 660: 545-554, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266336

RESUMO

Thermal runaway is a hazardous risk, occurring more readily in high-energy-density lithium-ion batteries (LIBs), which leads to a rapid temperature rise and even combustion or explosion when using flammable electrolyte systems. Flame retardants (FRs), such as trimethyl phosphate (TMPa) and triethyl phosphate (TEP), are commonly utilized due to their effective flame suppression, low toxicity, and excellent thermal stability. However, the lack of in-depth understanding of the flame retardancy mechanism and solid electrolyte interphase (SEI) formation process has made the development of functional electrolytes difficult at present. In this study, we clarified the flame retardancy and interfacial reaction mechanisms of low-flammable TMPa localized high-concentration electrolytes (LHCE) using hybrid ab initio and reactive force field (HAIR) schemes. Long-term HAIR simulation reveals that phosphorous radicals produced by the decomposition of TMPa capture carbon radicals, encouraging their polymerization into low-flammable oligomers, while fluorine-containing solvents in the electrolyte capture hydrogen radicals and produce nonflammable hydrofluoric acid (HF). This synergistic flame retardancy mechanism provides essential atomic-level insights for the rational design of high-safety electrolytes in the future.

2.
ACS Nano ; 18(6): 5029-5039, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286031

RESUMO

Clarifying the structure-reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Šand c = 6.89 Šwith a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo-2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).

3.
J Phys Chem Lett ; 13(34): 8047-8054, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994432

RESUMO

X-ray photoelectron spectroscopy (XPS) is a powerful surface analysis technique widely applied in characterizing the solid electrolyte interphase (SEI) of lithium metal batteries. However, experiment XPS measurements alone fail to provide atomic structures from a deeply buried SEI, leaving vital details missing. By combining hybrid ab initio and reactive molecular dynamics (HAIR) and machine learning (ML) models, we present an artificial intelligence ab initio (AI-ai) framework to predict the XPS of a SEI. A localized high-concentration electrolyte with a Li metal anode is simulated with a HAIR scheme for ∼3 ns. Taking the local many-body tensor representation as a descriptor, four ML models are utilized to predict the core level shifts. Overall, extreme gradient boosting exhibits the highest accuracy and lowest variance (with errors ≤ 0.05 eV). Such an AI-ai model enables the XPS predictions of ten thousand frames with marginal cost.

4.
Phys Chem Chem Phys ; 24(31): 18684-18690, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895316

RESUMO

Due to its low electrochemical potential and high theoretical specific energy, lithium-metal batteries (LMBs) have been considered as a promising advanced energy storage system for portable applications such as electric vehicles (EVs). However, the uncontrolled growth of lithium dendrites during cycling has remained a challenge. By utilizing an inert solvent to "dilute" the high concentration electrolytes, the concept of localized high-concentration electrolytes (LHCEs) has recently been demostrated as an effective solution to enable the dendrite-free cycling of LMBs. In this work, we investigated the reactions of 2 M lithium bis(fluorosulfonyl)imide (LiFSI) in a mixture of dimethoxyethane (DME)/tris(2,2,2-trifluoroethyl) orthoformate (TFEO) electrolyte at a Li metal anode. The SEI formation mechanism is investigated using a hybrid ab initio and reactive force field (HAIR) method. The 1n reactive HAIR trajectory reveals the important initial reduction reactions of LiFSI, TFEO, and DME. Particularly, both FSI anions and TFEO decompose quickly to release a considerable amount of F-, which leads to a LiF-rich SEI inorganic inner layer (IIL). Furthermore, TFEO produces a significant amount of unsaturated carbon products, such as thiophene, which can potentially increase the conductivity of SEI to increase the battery performance. Meanwhile, XPS analysis is utilized to further investigate the evolution of the atomic environment in SEI. Future designs of better electrolytes can be greatly aided by these results.

5.
ACS Appl Mater Interfaces ; 14(6): 7972-7979, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129322

RESUMO

Lithium metal batteries (LMBs) hold great promise in facilitating high-energy batteries due to their merits such as high specific capacity, low reduction potential, and so forth. However, the realizations of practical LMBs are hindered by severe problems such as undesirable dendrite growth, poor Coulombic efficiency, and so forth. A recently proposed fluorinated electrolyte based on 1 M lithium bis(fluorosulfonyl)imide (LiFSI) dissolved in designed fluorinated 1,4-dimethoxybutane (FDMB) solvent has attracted significant attention because of its excellent electrochemical performance that origins from its superior physical and chemical properties, especially its unique ability in forming a robust, stable solid electrolyte interphase (SEI). However, the detailed structure and reaction mechanism of the SEI formation in such a novel electrolyte remains unclear. In this work, we carry out a hybrid ab initio and reactive molecular dynamics (HAIR) simulation to investigate the elementary reactions that regulate the formation of the primitive SEI, paying special attention to the process that involves FDMB, the fluorinated solvent. HAIR simulation reveals that both FSI- anion and FDMB provide F that is adequate to form a uniformed LiF layer that resembles the inorganic inner layer (IIL) of the SEI. N and S radicals from the FSI- anion, which do not deposit on the electrode interface to form lithium-containing inorganic substances, promote the polymerization reaction of unsaturated carbon chains produced by FDMB defluorination, forming the organic outer layer (OOL) of the SEI. The combination of the LiF-rich IIL and polymer-rich organic OOL explains the superior performance of the FDMB-based electrolyte in the device. The detailed reaction mechanism and SEI observed in this work provide insights into the atomic scale for the rational design of F-rich electrolytes in the near future.

6.
ACS Appl Mater Interfaces ; 13(27): 31554-31560, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185998

RESUMO

The electroreduction of CO2 into value-added products is a significant step toward closing the global carbon loop, but its performance remains far from meeting the requirement of any practical application. The insufficient understanding of the reaction mechanism is one of the major causes that impede future development. Although several possible reaction pathways have been proposed, significant debates exist due to the lack of experimental support. In this work, we provide opportunities for experiments to validate the reaction mechanism by providing predictions of the core-level shifts (CLS) of reactive intermediates, which can be verified by the X-ray photoelectron spectroscopy (XPS) data in the experiment. We first validated our methods from benchmark calculations of cases with reliable experiments, from which we reach consistent predictions with experimental results. Then, we conduct theoretical calculations under conditions close to the operando experimental ones and predict the C 1s CLS of 20 reactive intermediates in the CO2 reduction reaction (CO2RR) to CH4 and C2H4 on a Cu(100) catalyst by carefully including solvation effects and applied voltage (U). The results presented in this work should be guidelines for future experiments to verify and interpret the reaction mechanism of CO2RR.

7.
J Phys Chem Lett ; 12(11): 2922-2929, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33725449

RESUMO

Due to creating a passivated solid electrolyte interphase (SEI), high concentration (HC) electrolytes demonstrate peculiar physicochemical properties and outstanding electrochemical performance. However, the structures of such SEI remains far from clear. In this work, a hybrid ab initio and reactive molecular dynamics (HAIR) scheme is employed to investigate the concentration effect of SEI formation by simulating the reductive degradation reactions of lithium bis(fluorosulfonyl)imide (LiFSI) in 1,3 dioxalane (DOL) electrolytes at concentrations of 1 M, 4 M, and 10 M. The efficient HAIR scheme allows the simulations to reach 1 ns to predict electrolytes' deep products at different concentrations. The simulation findings show that the most critical distinction between HC and its low concentration (LC) analogue is that anion decomposition in HC is much more incomplete when only S-F breaking is observed. These insights are important for the future development of advanced electrolytes by rational design of electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...