Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Food Chem X ; 18: 100751, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397186

RESUMO

Novel thermoresponsive emulsion gels and oleogels were fabricated by assembling nanofibrous from natural triterpenoid Quillaja saponin (QS) and glycyrrhizic acid (GA). The viscoelasticity of QS-coated emulsion was observed to be remarkably improved by GA and thus obtain the advantages of excellent gelatinous, thermoresponsive and reversible manner due to the viscoelastic texture from GA nanofibrous as scaffolds in continuous phase. In the gelled emulsions, the phase transition of the GA fibrosis network structure upon heating and cooling was attributed to a thermal sensitivity, whereas interface-induced fibrosis assembly of amphiphilic QS endowed the formation of stable emulsion droplets. Then these emulsion gels were further used as an effective template to fabricate soft-solid oleogels with high oil content of 96%. These findings open up new opportunities for the use of all-natural and sustainable ingredients to develop smart soft materials for replace trans and saturated fats in food industry and other fields.

2.
Food Chem ; 429: 136895, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487391

RESUMO

Structuring liquid oils into edible oleogels from natural and abundant plant ingredients has great significance in fields ranging from foods to pharmaceuticals but has proven challenging. Herein, novel bicomponent phytosterol-based oleogels were developed with natural phenolics. Investigating diverse natural phenolics, cinnamic acid (CA) and ethyl ferulate (EF) successfully formed oleogels in combination with phytosterols (PS), where a synergistic effect on the oleogelation and crystallization was observed compared to the corresponding single component formulations. FTIR and UV-vis spectra showed that the gel network was primarily driven by hydrogen bonding and π-π stacking. Furthermore, oscillatory shear demonstrated oleogels featured higher elastic and network structure deformation at molar ratio of 5:5 and 3:7. Moreover, the bicomponent phytosterol-based oleogels displayed partially reversible shear deformation and a reversible solid-liquid transition. Such information was useful for engineering the functional properties of oleogel-based lipidic materials, providing significance for the application in foods, cosmetics and pharmaceuticals industries.


Assuntos
Fitosteróis , Fitosteróis/química , Compostos Orgânicos/química , Fenóis , Preparações Farmacêuticas
3.
Heliyon ; 9(6): e17595, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416639

RESUMO

Endplate osteochondritis is considered one of the major causes of intervertebral disc degeneration (IVDD) and low back pain. Menopausal women have a higher rate of endplate cartilage degeneration than similarly aged men, but the related mechanisms are still unclear. Subchondral bone changes, mainly mediated by osteoblasts and osteoclasts, are considered an important reason for the degeneration of cartilage. This work explored the role of osteoclasts in endplate cartilage degeneration, as well as its underlying mechanisms. A rat ovariectomy (OVX) model was used to induce estrogen deficiency. Our experiments indicated that OVX significantly promoted osteoclastogenesis and anabolism and catabolism changes in endplate chondrocytes. OVX osteoclasts cause an imbalance between anabolism and catabolism in endplate chondrocytes, as shown by a decrease in anabolic markers such as Aggrecan and Collagen II, and an increase in catabolic markers such as a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and matrix metalloproteinases (MMP13). Osteoclasts were also confirmed in this study to be able to secrete HtrA serine peptidase 1 (HTRA1), which resulted in increased catabolism in endplate chondrocytes through the NF-κB pathway under estrogen deficiency. This study demonstrated the involvement and mechanism of osteoclasts in the anabolism and catabolism changes of endplate cartilage under estrogen deficiency, and proposed a new strategy for the treatment of endplate osteochondritis and IVDD by targeting HTRA1.

4.
Plant Cell ; 35(7): 2484-2503, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37070946

RESUMO

Three-dimensional (3D) chromatin organization is highly dynamic during development and seems to play a crucial role in regulating gene expression. Self-interacting domains, commonly called topologically associating domains (TADs) or compartment domains (CDs), have been proposed as the basic structural units of chromatin organization. Surprisingly, although these units have been found in several plant species, they escaped detection in Arabidopsis (Arabidopsis thaliana). Here, we show that the Arabidopsis genome is partitioned into contiguous CDs with different epigenetic features, which are required to maintain appropriate intra-CD and long-range interactions. Consistent with this notion, the histone-modifying Polycomb group machinery is involved in 3D chromatin organization. Yet, while it is clear that Polycomb repressive complex 2 (PRC2)-mediated trimethylation of histone H3 on lysine 27 (H3K27me3) helps establish local and long-range chromatin interactions in plants, the implications of PRC1-mediated histone H2A monoubiquitination on lysine 121 (H2AK121ub) are unclear. We found that PRC1, together with PRC2, maintains intra-CD interactions, but it also hinders the formation of H3K4me3-enriched local chromatin loops when acting independently of PRC2. Moreover, the loss of PRC1 or PRC2 activity differentially affects long-range chromatin interactions, and these 3D changes differentially affect gene expression. Our results suggest that H2AK121ub helps prevent the formation of transposable element/H3K27me1-rich long loops and serves as a docking point for H3K27me3 incorporation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Lisina/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cromatina/genética , Cromatina/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
5.
Chem Rev ; 123(9): 5459-5520, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115521

RESUMO

Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.


Assuntos
Biocatálise , Técnicas de Química Sintética
6.
Rice (N Y) ; 16(1): 17, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964817

RESUMO

Aneuploid refers to the gene dosage imbalance due to copy number alterations. Aneuploidy is generally harmful to the growth, development and reproduction of organisms according to the numerous research. However, it has rarely been reported on whether aneuploid have a relevant pattern of genome expression between the parental and its offspring generations. In this study, mRNA sequencing analysis was performed on rice (Oryza sativa L.) primary trisomes 11 and 12, same primary trisomes and normal individuals in their filial generation. We systematically summarized the changes in gene expression patterns that occur on cis genes and on trans genes between parental and filial generations. In T11 and T12, the ratio of cis-gene expression showed intermediate type in parents and dosage compensation in filial generations, which maybe due to more genes being downregulated. The trans genes were also affected by aneuploidy and manifested as cis-related. The strains with normal chromosomes in filial generations, there are still aneuploid-sensitive genes differentially expressed in their genomes, indicating that the effect of aneuploidy is far-reaching and could not be easily eliminated. Meanwhile, among these differentially expressed genes, genes with low-expression level were more likely to be upregulated, while genes with medium- and high-expression level were easy to be downregulated. For the different types of rice aneuploid, upregulated genes were mainly associated with genomic imbalance while downregulated genes were mainly influenced by the specific added chromosome. In conclusion, our results provide new insights into the genetic characterization and evolution of biological aneuploidy genomes.

7.
Carbohydr Polym ; 305: 120499, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737180

RESUMO

High-internal-phase emulsion gels (HIPE-Gels) and oleogels were successfully fabricated through synergistically combination of natural triterpenoid Quillaja saponin (QS) and citrus dietary fiber (CDF). The amphiphilic QS significantly lowered the oil-water interface tension; whereas CDF could form compact structure at the interface as well as in the bulk under a hydrogen-bonding interaction with saponin. The combination endowed the emulsion gels with enhanced performance, such as decreasing droplet size, strengthening gel network structure and better viscoelastic. At a very low QS of 0.045 %, stable HIPE-Gels can be produced with 0.3 % CDF, which mainly attributing to the highly viscoelastic fiber networks in continuous phase and thus actively trap the QS-coated emulsion droplets. Consequently, the robust HIPE-Gels were applied as soft template to fabricate oleogels with controlled by QS and CDF loading. These findings proved an effective strategy towards structuring edible liquid oil into healthy gels for alternating saturated and trans fats in foods.


Assuntos
Saponinas , Triterpenos , Emulsões/química , Saponinas/química , Géis/química , Fibras na Dieta
8.
J Integr Plant Biol ; 65(6): 1394-1407, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807738

RESUMO

High salt is a major environmental factor that threatens plant growth and development. Increasing evidence indicates that histone acetylation is involved in plant responses to various abiotic stress; however, the underlying epigenetic regulatory mechanisms remain poorly understood. In this study, we revealed that the histone deacetylase OsHDA706 epigenetically regulates the expression of salt stress response genes in rice (Oryza sativa L.). OsHDA706 localizes to the nucleus and cytoplasm and OsHDA706 expression is significantly induced under salt stress. Moreover, oshda706 mutants showed a higher sensitivity to salt stress than the wild-type. In vivo and in vitro enzymatic activity assays demonstrated that OsHDA706 specifically regulates the deacetylation of lysines 5 and 8 on histone H4 (H4K5 and H4K8). By combining chromatin immunoprecipitation and mRNA sequencing, we identified the clade A protein phosphatase 2 C gene, OsPP2C49, which is involved in the salt response as a direct target of H4K5 and H4K8 acetylation. We found that the expression of OsPP2C49 is induced in the oshda706 mutant under salt stress. Furthermore, the knockout of OsPP2C49 enhances plant tolerance to salt stress, while its overexpression has the opposite effect. Taken together, our results indicate that OsHDA706, a histone H4 deacetylase, participates in the salt stress response by regulating the expression of OsPP2C49 via H4K5 and H4K8 deacetylation.


Assuntos
Histonas , Oryza , Histonas/metabolismo , Oryza/fisiologia , Tolerância ao Sal/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant J ; 111(3): 859-871, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678753

RESUMO

Neocentromeres develop when kinetochores assemble de novo at DNA loci that are not previously associated with CenH3 nucleosomes, and can rescue rearranged chromosomes that have lost a functional centromere. The molecular mechanisms associated with neocentromere formation in plants have been elusive. Here, we developed a Xian (indica) rice line with poor growth performance in the field due to approximately 272 kb deletion that spans centromeric DNA sequences, including the centromeric satellite repeat CentO, in the centromere of chromosome 8 (Cen8). The CENH3-binding domains were expanded downstream of the original CentO position in Cen8, which revealed a de novo centromere formation in rice. The neocentromere formation avoids chromosomal regions containing functional genes. Meanwhile, canonical histone H3 was replaced by CENH3 in the regions with low CENH3 levels, and the CenH3 nucleosomes in these regions became more periodic. In addition, we identified active genes in the deleted centromeric region, which are essential for chloroplast growth and development. In summary, our results provide valuable insights into neocentromere formation and show that functional genes exist in the centromeric regions of plant chromosomes.


Assuntos
Oryza , Centrômero/genética , Cromossomos Humanos Par 8 , Cromossomos de Plantas/genética , Humanos , Nucleossomos/genética , Oryza/genética
11.
Front Chem ; 10: 841151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372278

RESUMO

A class of iodobenzoyldiazenido-functionalized POMs (TBA)3 [Mo6O18(=N=NCOAr)] (Ar = Ph-o-I (1); Ph-m-I (2); Ph-p-I (3); Ph-3,4-I2 (4); Ph-2,3,5-I3 (5) (TBA = tetrabutylammonium) were prepared via the refluxing reaction of α-octamolybdates, DCC, and corresponding hydrazides in dry acetonitrile. Their structures were determined by Fourier-transform infrared spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, hydrogen-1 nuclear magnetic resonance, and high-resolution mass spectrometry. Research on the biological activity of title compounds shows that L3, L5, 3, and 5 demonstrate potent inhibitory activity against coxsackievirus B3 and low in vitro cytotoxic activity against Hep-2 cell lines. The covalent linkage between the iodobenzoyldiazenido components and POMs can enhance the molecular inhibitory efficiency of iodobenzohydrazides.

12.
J Am Chem Soc ; 144(3): 1130-1137, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029378

RESUMO

Herein, we report the first Ni-catalyzed enantioselective deaminative alkylation of amino acid and peptide derivatives with unactivated olefins. Key for success was the discovery of a new sterically encumbered bis(oxazoline) ligand backbone, thus offering a de novo technology for accessing enantioenriched sp3-sp3 linkages via sp3 C-N functionalization. Our protocol is distinguished by its broad scope and generality across a wide number of counterparts, even in the context of late-stage functionalization. In addition, an enantioselective deaminative remote hydroalkylation reaction of unactivated internal olefins is within reach, thus providing a useful entry point for forging enantioenriched sp3-sp3 centers at remote sp3 C-H sites.


Assuntos
Alcenos
13.
J Agric Food Chem ; 70(1): 309-318, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958201

RESUMO

Growing interest is being dedicated to smart soft matters because of their potential in controlling bioactives upon exposure to an appropriate stimulus. Herein, structuring of edible liquid oil into oleogels and emulgels as smart thermo-triggered soft vehicles for controllable release of diverse nutrients was developed. Edible liquid oil was trapped inside the crystal network structure of phytosterols and monoglycerides resulting in bicomponent solidlike oleogels. Subsequently, both water-in-oleogel (W/O) emulgels and glycerol-in-oleogel (G/O) emulgels were further fabricated by spatial distribution of the stabilizing interfacial crystals around dispersed droplets as well as the network crystals in the continuous phase. Rheological measurements showed that the gel strength of the oleogel-based emulgels depends on the fraction of the aqueous phase and is greater than that of corresponding oleogels due to a filler effect of dispersed aqueous droplets within the crystal network, offering an additional strategy to tune the structure and rheology. Comparatively, introducing glycerol endowed a higher gel strength for the oleogel-based emulgels than water, particularly at increased filler loads. In addition, these soft matters exhibited interesting thermoresponsive nature, which exhibit the flexibility for programmed release of coencapsulated bioactive components upon exposure to an appropriate thermal triggered switchable. The resulted smart thermo-triggered soft matters have emerging opportunities for application in functional active ingredient delivery by on-demand strategies.


Assuntos
Monoglicerídeos , Fitosteróis , Glicerol , Reologia , Água
14.
Org Lett ; 23(16): 6212-6216, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34355911

RESUMO

The reaction of o-benzofulvene with TfOH leads to intramolecular cyclization through novel C-C and C-N bond formation, resulting in the formation of 5H,10'H-spiro[benzo[k]phenanthridine-5,6'-dibenzopentalene]. This protocol provides a new molecular framework with reasonable to excellent yields and tolerates various electron-withdrawing/donating substituents. This method yields diastereoselectivity of up to >20:1. Furthermore, it is free of bases, oxidants, and metals and proceeds under mild reaction conditions, which are favorable for synthetic organic chemistry.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33999789

RESUMO

Two Gram-negative, aerobic, motile bacteria strains were isolated from leaf spot disease of Quercus mongolica. Strain hsmgli-8T has 99.86 % 16S rRNA gene sequence similarity to LY10J, and the highest 16S rRNA gene sequence similarity to Pseudomonas cerasi 58T (97.2 %), then Pseudomonas ficuserectae JCM 2400T (97.18 %), Pseudomonas meliae CFBP 3225T, Pseudomonas tremae CFBP 6111T and Pseudomonas congelans DSM 14939T (all 97.12 %), and less than 97.1 % similarity to other recognized species. In phylogenetic trees based on 16S rRNA gene and multilocus sequence data, the two novel strains form a separate branch, indicating that they do not belong to any Pseudomonas group and subgroup, and should belong to a novel species within the genus Pseudomonas. This assertion is also supported by the results of genome average nucleotide identity analysis. The major fatty acids are C16 : 0, C18 : 1 ω7c and/or C18 : 1 ω6c, C16 : 1 ω7c and/or C16 : 1 ω6c. Polar lipids include phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, aminolipid and seven uncharacterized phospholipids. The predominant respiratory quinone is Q-9. The DNA G+C content is 59.45-59.50 mol%. Based on these data, we propose that the two novel strains should be assigned as a novel species within the genus Pseudomonas. We propose that the novel strains be named Pseudomonas quercus sp. nov. The type strain is hsmgli-8T (=CFCC 15739T=LMG 31544T).


Assuntos
Filogenia , Doenças das Plantas/microbiologia , Pseudomonas/classificação , Quercus/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
16.
Nat Nanotechnol ; 16(7): 795-801, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33888885

RESUMO

Thin-film architectures are a staple in a wide range of technologies, such as semiconductor devices, optical coatings, magnetic recording, solar cells and batteries. Despite the industrial success of thin-film technology, mostly due to the easy fabrication and low cost, a fundamental drawback remains: it is challenging to alter the features of the film once fabricated. Here we report a methodology to modify the thickness and sequence of the innermost solid-state thin-film layers. We start with a thin-film stack of amorphous iron oxide and silver. By applying a suitable voltage bias and then reversing it, we can float the silver layer above or below the oxide layer by virtue of the migration of silver atoms. Scanning transmission electron microscopy reveals various sequences and thicknesses of the silver and oxide layers achieved with different experimental conditions. As a proof-of-principle, we show a dynamic change of structural colours of the stack derived from this process. Our results may offer opportunities to dynamically reconfigure thin-film-based functional nanodevices in situ.

17.
Arch Microbiol ; 203(5): 2699-2709, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33715030

RESUMO

In this study, a higher metal ions-resistant bacterium, Stenotrophomonas rhizophila JC1 was isolated from contaminated soil in Jinchang city, Gansu Province, China. The Pb2+ (120 mg/L) and Cu2+ (80 mg/L) removal rate of the strain reached at 76.9% and 83.4%, respectively. The genome comprises 4268161 bp in a circular chromosome with 67.52% G + C content and encodes 3719 proteins. The genome function analysis showed czc operon, mer operon, cop operon, arsenic detoxification system in strain JC1 were contributed to the removal of heavy metals. Three efflux systems (i.e., RND, CDF, and P-ATPase) on strain JC1 genome could trigger the removal of divalent cations from cells. cAMP pathway and ABC transporter pathway might be involved in the transport and metabolism of heavy metals. The homology analysis exhibited multi-gene families such as ABC transporters, heavy metal-associated domain, copper resistance protein, carbohydrate-binding domain were distributed across 410 orthologous groups. In addition, heavy metal-responsive transcription regulator, thioredoxin, heavy metal transport/detoxification protein, divalent-cation resistance protein CutA, arsenate reductase also played important roles in the heavy metals adsorption and detoxification process. The complete genome data provides insight into the exploration of the interaction mechanism between microorganisms and heavy metals.


Assuntos
Proteínas de Membrana Transportadoras/genética , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Stenotrophomonas/genética , Stenotrophomonas/metabolismo , Composição de Bases/genética , China , Inativação Metabólica/genética , Inativação Metabólica/fisiologia , Solo/química , Stenotrophomonas/efeitos dos fármacos , Sequenciamento Completo do Genoma
18.
Angew Chem Int Ed Engl ; 60(21): 11740-11744, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33630396

RESUMO

A catalytic 1,1-difunctionalization of unactivated olefins en route to sp3 bis-organometallic B,B(Si)-reagents is described. The protocol is characterized by exceptional reaction rates, mild conditions, wide scope, and exquisite selectivity pattern, constituting a new platform to access sp3 bis-organometallics.

19.
Connect Tissue Res ; 62(6): 709-719, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33397157

RESUMO

Osteoarthritis (OA) is a joint disorder involving cartilage degeneration and subchondral bone sclerosis. The bone-cartilage interface is implicated in OA pathogenesis due to its susceptibility to mechanical and biological factors. The crosstalk between cartilage and the underlying subchondral bone is elevated in OA due to multiple factors, such as increased vascularization, porosity, microcracks and fissures. Changes in the osteochondral joint are traceable to alterations in chondrocytes and bone cells (osteoblasts, osteocytes and osteoclasts). The phenotypes of these cells can change with the progression of OA. Aberrant intercellular communications among bone cell-bone cell and bone cell-chondrocyte are of great importance and might be the factors promoting OA development. An appreciation of cellular phenotypic changes in OA and the mechanisms by which these cells communicate would be expected to lead to the development of targeted drugs with fewer side effects.


Assuntos
Cartilagem Articular , Osteoartrite , Osso e Ossos/patologia , Cartilagem Articular/patologia , Condrócitos/patologia , Humanos , Osteoartrite/patologia , Osteoartrite/terapia , Osteoblastos/patologia
20.
Biomed Res Int ; 2020: 5306509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344640

RESUMO

BACKGROUND: As the important components in polycomb repressive complexes 1 (PRC1) and heterochromatin protein 1 (HP1), Chromobox (CBX) family members are involved in epigenetic regulatory function, transcriptional repression, and other cellular metabolisms. Increasing studies have indicated significant associations between CBX and tumorigenesis, which is a progression in different types of cancers. However, the information about the roles of each CBX in gastric cancer is extremely limited. METHODS: We explored CBX mRNA expression, corrections with clinicopathological parameters, protein expression, prognostic values, enrichment analysis with several databases including Oncomine, Human Protein Atlas, UALCAN, Kaplan-Meier plotter, cBioPortal, GeneMANIA, and Enrichr. RESULTS: In our study, comparing to the normal tissues, higher mRNA expression of CBX1/2/3/4/5/8 and lower mRNA expression of CBX7 were found in GC tissues while upregulations of CBX1/2/3/4/5/8 and downregulations of CBX7 were indicated to be significantly correlated to the nodal metastasis status and individual cancer stages in GC patients. As for protein level, the expression of CBX2/3/4/5/6 was higher and the expression of CBX7 was lower in the GC tissues than those in the normal. What is more, higher mRNA expression of CBX1/5/6/8 and lower mRNA expression of CBX7 were markedly correlated to poor outcomes of OS and FP in GC patients. Besides, high mutation rate of CBXs (42%) was observed in GC patients. CONCLUSIONS: We suggest that CBX5/7 may serve as potential therapeutic targets for GC while CBX1/8 may serve as potential prognostic indicators for GC.


Assuntos
Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica , Complexo Repressor Polycomb 1/genética , Neoplasias Gástricas/metabolismo , Carcinogênese , Homólogo 5 da Proteína Cromobox , Bases de Dados Factuais , Bases de Dados de Proteínas , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Ligases , Mutação , Proteínas do Grupo Polycomb , Prognóstico , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...