Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834543

RESUMO

This paper presents a hybrid manufacturing process for the preparation of complex cavity structure parts with high surface quality. Firstly, laser precision packaging technology is utilized to accurately connect a thin plate to a substrate with microchannel. Secondly, Direct Metal Laser-Sintering (DMLS) technology is utilized to completely shape the part. The morphology and microstructure of laser encapsulated specimens and DMLS molded parts were investigated. The results show that the thin plate and the substrate can form a good metallurgical bond. The lowest surface roughness of the DMLS molded parts was 1.18 µm. The perpendicularity between the top of the microchannel and the side wall was optimal when the laser power was 240 W. Consequently, the hybrid manufacturing process effectively solves the problems of poor surface quality and powder sticking of closed inner cavities. The method effectively eliminates the defects of adhesive powder in the inner cavity of the DMLS microchannel, improves the finish, and solves the problem that mechanical tools cannot be processed inside the microchannel, which lays the foundation for the research of DMLS high-quality microchannel process.

2.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762662

RESUMO

The demand for rice grain quality, particularly in terms of eating and cooking quality, is increasingly concerning at present. However, the limited availability of rice-quality-related gene resources and time-consuming and inefficient traditional breeding methods have severely hindered the pace of rice grain quality improvement. Exploring novel methods for improving rice grain quality and creating new germplasms is an urgent problem that needs to be addressed. In this study, an amino-acid-transporter-encoding gene OsAAP11 (Os11g0195600) mainly expressed in endosperm was selected as the target for gene editing using the CRISPR/Cas9 system in three japonica genetic backgrounds (Wuyungeng30, Nangeng9108, and Yanggeng158, hereafter referred to as WYG30, NG9108, and YG158). We successfully obtained homozygous osaap11 mutants without transgenic insertion. Subsequently, we conducted comprehensive investigations on the agronomic traits, rice grain quality traits, and transcriptomic analysis of these mutants. The results demonstrate that loss of OsAAP11 function led to a reduced amino acid content and total protein content in grains without affecting the agronomic traits of the plants; meanwhile, it significantly increased the peak viscosity, holding viscosity, and final viscosity values during the cooking process, thereby enhancing the eating and cooking quality. This study not only provides valuable genetic resources and fundamental materials for improving rice grain quality but also provides novel technical support for the rapid enhancement of rice grain quality.


Assuntos
Oryza , Oryza/genética , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Agricultura , Culinária , Grão Comestível/genética
3.
Science ; 379(6638): eade8416, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36952416

RESUMO

The use of alkaline salt lands for crop production is hindered by a scarcity of knowledge and breeding efforts for plant alkaline tolerance. Through genome association analysis of sorghum, a naturally high-alkaline-tolerant crop, we detected a major locus, Alkaline Tolerance 1 (AT1), specifically related to alkaline-salinity sensitivity. An at1 allele with a carboxyl-terminal truncation increased sensitivity, whereas knockout of AT1 increased tolerance to alkalinity in sorghum, millet, rice, and maize. AT1 encodes an atypical G protein γ subunit that affects the phosphorylation of aquaporins to modulate the distribution of hydrogen peroxide (H2O2). These processes appear to protect plants against oxidative stress by alkali. Designing knockouts of AT1 homologs or selecting its natural nonfunctional alleles could improve crop productivity in sodic lands.


Assuntos
Álcalis , Produtos Agrícolas , Subunidades gama da Proteína de Ligação ao GTP , Proteínas de Plantas , Tolerância ao Sal , Sorghum , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Peróxido de Hidrogênio/metabolismo , Oryza/genética , Oryza/fisiologia , Estresse Oxidativo/genética , Melhoramento Vegetal , Salinidade , Álcalis/análise , Álcalis/toxicidade , Bicarbonato de Sódio/análise , Bicarbonato de Sódio/toxicidade , Carbonatos/análise , Carbonatos/toxicidade , Tolerância ao Sal/genética , Sorghum/genética , Sorghum/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Aquaporinas/metabolismo , Produção Agrícola , Loci Gênicos , Solo/química
4.
Int J Food Microbiol ; 387: 110053, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36521241

RESUMO

Fresh vegetables are closely associated with foodborne disease outbreaks; however, systematic analysis of the microbiological quality of fresh vegetables and molecular information on foodborne pathogens in fresh produce are poorly reported in China. Here, we evaluated the epidemiological prevalence of coliforms via the most probable number method and characterized Salmonella and ciprofloxacin-resistant (CIPR) Escherichia coli isolates recovered from retail fresh vegetables in Shaanxi Province, China. Antimicrobial susceptibility testing, serotype determination, multilocus sequence typing (MLST), core genome multilocus sequence typing (cgMLST), antibiotic resistance encoding gene (ARG) annotation, virulence factor prediction, and functional classification were performed. Between October 2020 and September 2021, 576 samples (i.e., tomatoes, lettuces, spinaches, and cabbages) were found to be positive for coliforms, and the prevalence of coliforms showed a seasonal trend. Coliform counts of vegetables in supermarkets in Xi'an were significantly lower (P < 0.01) than that in other cities. The detection rates of Salmonella and CIPRE. coli-positive vegetables were 1 % (6/576) and 0.7 % (4/576), respectively. All isolates exhibited resistance to ≥1 antibiotics, and 92.9 % (13/14) were multidrug-resistant. One extended spectrum ß-lactamase (ESBL)-producing CIPRE. coli isolate in spinach was resistant to not only three third-generation cephalosporins but also to two polymyxins. Among nine Salmonella isolates, five different serovars (S. Enteritidis, S. Indiana, monophasic variant of S. Typhimurium, S. Agona, and S. Gallinarum), four sequence types (STs; ST11, ST13, ST17, and ST34), and seven core genome STs (cgSTs) were identified. Five CIPRE. coli strains were assigned to three serovars (O101:H4, O8:H18, and O11:H25), three STs (ST44, ST48, and ST457), and four cgSTs. Coexisting amino acid mutations of Thr57Ser/Ser80Arg in ParC and Ser83Phe/Asp87Gly in GyrA in quinolone resistance-determining regions (QRDRs) might be causes for nalidixic acid resistance. Eight definite virulence profiles in eight serovars were identified. Notably, cdtB and pltA only encoded typhoid toxins and were just detected from S. Typhoid isolates were also detected from S. Indiana and monophasic S. Typhimurium, which are closely associated with swine food chain were first detected in fresh vegetables. In conclusion, our findings suggest that coliform contamination on fresh vegetables is prevalent in this province. Most Salmonella and CIPRE. coli isolates were phenotypically and genetically diverse and could resist multiple antibiotics by carrying multiple ARGs and virulence genes.


Assuntos
Ciprofloxacina , Febre Tifoide , Animais , Suínos , Ciprofloxacina/farmacologia , Escherichia coli/genética , Verduras , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana Múltipla/genética , Salmonella , Antibacterianos/farmacologia , China/epidemiologia , Testes de Sensibilidade Microbiana
5.
Materials (Basel) ; 15(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234028

RESUMO

The carbon fiber-reinforced composite (CFRP) has the properties of a high specific strength, low density and excellent corrosion resistance; it has been widely used in aerospace and automobile lightweight manufacturing as an important material. To improve the CFRP cutting quality in the manufacturing process, a nanosecond laser with a wavelength of 532 nm was applied to cut holes with a 2-mm-thick CFRP plate by using laser rotational cutting technology. The influence of different parameters on the heat-affected zone, the cutting surface roughness and the hole taper was explored, and the cutting process parameters were optimized. With the optimized cutting parameters, the minimum value of the heat-affected zone, the cutting surface roughness and the hole taper can be obtained, which are 71.7 µm, 2.68 µm and 0.64°, respectively.

6.
J Integr Plant Biol ; 64(10): 1860-1865, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35906898

RESUMO

Rice eating and cooking quality (ECQ) is a major concern of breeders and consumers, determining market competitiveness worldwide. Rice grain protein content (GPC) is negatively related to ECQ, making it possible to improve ECQ by manipulating GPC. However, GPC is genetically complex and sensitive to environmental conditions; therefore, little progress has been made in traditional breeding for ECQ. Here, we report that CRISPR/Cas9-mediated knockout of genes encoding the grain storage protein glutelin rapidly produced lines with downregulated GPC and improved ECQ. Our finding provides a new strategy for improving rice ECQ.


Assuntos
Proteínas de Grãos , Oryza , Oryza/genética , Oryza/metabolismo , Edição de Genes , Glutens/genética , Glutens/metabolismo , Proteínas de Grãos/metabolismo , Melhoramento Vegetal , Culinária
7.
Micromachines (Basel) ; 14(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677085

RESUMO

Carbon fiber-reinforced composites are widely used in automobile, aerospace and military lightweight manufacturing due to their excellent mechanical properties such as light weight, excellent fracture resistance, corrosion resistance and wear resistance, etc. However, because of their high hardness, anisotropy and low interlayer strength characteristics, there are many problems with machine carbon fiber-reinforced composites with traditional methods. As a non-contact processing technology, laser machining technology has lots of advantages in carbon fiber-reinforced composites processing. However, there are also some defects produced in laser machining process such the heat affected zone, delamination and fiber extraction due to the great difference of physical properties between the carbon fibers and the resin matrix. To improve the quality of carbon fiber-reinforced composites laser machining, lots of works have been carried out. In this paper, the research progress of carbon fiber-reinforced composites laser machining parameters optimization and numerical simulation was summarized, the characteristics of laser cutting carbon fiber-reinforced composites and cutting quality influence factors were discussed, and the developing trend of the carbon fiber-reinforced composites laser cutting was prospected.

8.
Mol Plant ; 14(10): 1699-1713, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34216830

RESUMO

G-protein signaling and ubiquitin-dependent degradation are both involved in grain development in rice, but how these pathways are coordinated in regulating this process is unknown. Here, we show that Chang Li Geng 1 (CLG1), which encodes an E3 ligase, regulates grain size by targeting the Gγ protein GS3, a negative regulator of grain length, for degradation. Overexpression of CLG1 led to increased grain length, while overexpression of mutated CLG1 with changes in three conserved amino acids decreased grain length. We found that CLG1 physically interacts with and ubiquitinats GS3which is subsequently degraded through the endosome degradation pathway, leading to increased grain size. Furthermore, we identified a critical SNP in the exon 3 of CLG1 that is significantly associated with grain size variation in a core collection of cultivated rice. This SNP results in an amino acid substitution from Arg to Ser at position 163 of CLG1 that enhances the E3 ligase activity of CLG1 and thus increases rice grain size. Both the expression level of CLG1 and the SNP CLG1163S may be useful variations for manipulating grain size in rice.


Assuntos
Endossomos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Grão Comestível , Mutação com Ganho de Função , Oryza/anatomia & histologia , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , Proteólise , Ubiquitina-Proteína Ligases/genética
9.
Mol Plant ; 14(7): 1168-1184, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933648

RESUMO

Reproductive transition of grasses is characterized by switching the pattern of lateral branches, featuring the suppression of outgrowth of the subtending leaves (bracts) and rapid formation of higher-order branches in the inflorescence (panicle). However, the molecular mechanisms underlying such changes remain largely unknown. Here, we show that bract suppression is required for the reproductive branching in rice. We identified a pathway involving the intrinsic time ruler microRNA156/529, their targets SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, NECK LEAF1 (NL1), and PLASTOCHRON1 (PLA1), which regulates the bract outgrowth and thus affects the pattern switch between vegetative and reproductive branching. Suppression of the bract results in global reprogramming of transcriptome and chromatin accessibility following the reproductive transition, while these processes are largely dysregulated in the mutants of these genes. These discoveries contribute to our understanding of the dynamic plant architecture and provide novel insights for improving crop yields.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/fisiologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , RNA de Plantas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genes de Plantas , Oryza/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Dedos de Zinco
10.
Rice (N Y) ; 12(1): 51, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31312920

RESUMO

BACKGROUND: Rice (Oryza sativa) feeds half of the world's population. Rice grain yield and quality which are constrained by diseases and mineral nutritions have important human healthy impacts. Plant "fruit-weight 2.2-like" (FWL) genes play key roles in modulating plant fruit weight, organ size and iron distribution. Previous work has uncovered that the grains of OsFWL5-oeverexpressing rice accumulated more beneficial element zinc (Zn) and less toxic element cadmium (Cd) content. However, whether FWL genes play roles in rice resistance remains unknown. FINDINGS: Here, we validated that one of rice FWL genes OsFWL5 plays a positive role in defense to Xanthomonas oryzae pv. oryzae (Xoo). Overexpresion of OsFWL5 promotes H2O2 accumulation and cell death. The OsFWL5-overexpresing plants show activated flg22-induced reactive oxygen species (ROS) generation, and increased resistance to Xoo, indicating that OsFWL5 functions to increase pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. The activated defense response is associated with increased the expression of genes involved in jasmonic acid (JA)-related signaling. Furthermore, Cd can induce rice resistance to Xoo, and OsFWL5 is required for Cd-induced rice defense response. CONCLUSION: Putting our finds and previous work together, OsFWL5 could be a candiate gene for breeders to genetically improve rice resistance and grain quality.

11.
Nat Commun ; 10(1): 1949, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028264

RESUMO

Grain protein content (GPC) affects rice nutrition quality. Here, we identify two stable quantitative trait loci (QTLs), qGPC-1 and qGPC-10, controlling GPC in a mapping population derived from indica and japonica cultivars crossing. Map-based cloning reveals that OsGluA2, encoding a glutelin type-A2 precursor, is the candidate gene underlying qGPC-10. It functions as a positive regulator of GPC and has a pleiotropic effect on rice grain quality. One SNP located in OsGluA2 promoter region is associated with its transcript expression level and GPC diversity. Polymorphisms of this nucleotide can divide all haplotypes into low (OsGluA2LET) and high (OsGluA2HET) expression types. Population genetic and evolutionary analyses reveal that OsGluA2LET, mainly present in japonica accessions, originates from wild rice. However, OsGluA2HET, the dominant type in indica, is acquired through mutation of OsGluA2LET. Our results shed light on the understanding of natural variations of GPC between indica and japonica subspecies.


Assuntos
Proteínas de Grãos/metabolismo , Oryza/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Grão Comestível/metabolismo , Haplótipos/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética
12.
Nat Commun ; 9(1): 851, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487318

RESUMO

Manipulating grain size is an effective strategy for increasing cereal yields. Here we identify a pathway composed of five subunits of the heterotrimeric G proteins that regulate grain length in rice. The Gß protein is essential for plant survival and growth. Gα provides a foundation for grain size expansion. Three Gγ proteins, DEP1, GGC2 and GS3, antagonistically regulate grain size. DEP1 and GGC2, individually or in combination, increase grain length when in complex with Gß. GS3, having no effect on grain size by itself, reduces grain length by competitively interacting with Gß. By combining different G-protein variants, we can decrease grain length by up to 35% or increase it by up to 19%, which leads to over 40% decreasing to 28% increasing of grain weight. The wide existence of such a conserved system among angiosperms suggests a possible general predictable approach to manipulating grain/organ sizes.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Subunidades gama da Proteína de Ligação ao GTP/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Sementes/genética , Sementes/metabolismo
13.
Mol Plant ; 10(4): 634-644, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28110091

RESUMO

Stigma exsertion, a key determinant of the rice mating system, greatly contributes to the application of heterosis in rice. Although a few quantitative trait loci associated with stigma exsertion have been fine mapped or cloned, the underlying genetic architecture remains unclear. We performed a genome-wide association study on stigma exsertion and related floral traits using 6.5 million SNPs characterized in 533 diverse accessions of Oryza sativa. We identified 23 genomic loci that are significantly associated with stigma exsertion and related traits, three of which are co-localized with three major grain size genes GS3, GW5, and GW2. Further analyses indicated that these three genes affected the stigma exsertion by controlling the size and shape of the spikelet and stigma. Combinations of GS3 and GW5 largely defined the levels of stigma exsertion and related traits. Selections of these two genes resulted in specific distributions of floral traits among subpopulations of O. sativa. The low stigma exsertion combination gw5GS3 existed in half of the cultivated rice varieties; therefore, introducing the GW5gs3 combination into male sterile lines is of high potential for improving the seed production of hybrid rice.


Assuntos
Flores/genética , Estudo de Associação Genômica Ampla/métodos , Oryza/genética , Cromossomos de Plantas/genética , Flores/metabolismo , Oryza/metabolismo , Locos de Características Quantitativas/genética , Sementes/genética , Sementes/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(50): 15504-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631749

RESUMO

Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 (miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) and miR172/APETALA2 (AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPLs reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPLs modulate panicle branching by directly regulating the miR172/AP2 and PANICLE PHYTOMER2 (PAP2)/Rice TFL1/CEN homolog 1 (RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement.


Assuntos
Oryza/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Sequência de Aminoácidos , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Meristema/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Oryza/anatomia & histologia , Oryza/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/ultraestrutura , Ligação Proteica , Reprodução
15.
Proc Natl Acad Sci U S A ; 107(45): 19579-84, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20974950

RESUMO

Grain yield in many cereal crops is largely determined by grain size. Here we report the genetic and molecular characterization of GS3, a major quantitative trait locus for grain size. It functions as a negative regulator of grain size and organ size. The wild-type isoform is composed of four putative domains: a plant-specific organ size regulation (OSR) domain in the N terminus, a transmembrane domain, a tumor necrosis factor receptor/nerve growth factor receptor (TNFR/NGFR) family cysteine-rich domain, and a von Willebrand factor type C (VWFC) in the C terminus. These domains function differentially in grain size regulation. The OSR domain is both necessary and sufficient for functioning as a negative regulator. The wild-type allele corresponds to medium grain. Loss of function of OSR results in long grain. The C-terminal TNFR/NGFR and VWFC domains show an inhibitory effect on the OSR function; loss-of-function mutations of these domains produced very short grain. This study linked the functional domains of the GS3 protein to natural variation of grain size in rice.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Oryza/genética , Proteínas de Plantas/genética , Mutação , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...