Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Chem Phys ; 23(17): 9911-9961, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990693

RESUMO

A primary sink of air pollutants and their precursors is dry deposition. Dry deposition estimates differ across chemical transport models, yet an understanding of the model spread is incomplete. Here, we introduce Activity 2 of the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4). We examine 18 dry deposition schemes from regional and global chemical transport models as well as standalone models used for impact assessments or process understanding. We configure the schemes as single-point models at eight Northern Hemisphere locations with observed ozone fluxes. Single-point models are driven by a common set of site-specific meteorological and environmental conditions. Five of eight sites have at least 3 years and up to 12 years of ozone fluxes. The interquartile range across models in multiyear mean ozone deposition velocities ranges from a factor of 1.2 to 1.9 annually across sites and tends to be highest during winter compared with summer. No model is within 50 % of observed multiyear averages across all sites and seasons, but some models perform well for some sites and seasons. For the first time, we demonstrate how contributions from depositional pathways vary across models. Models can disagree with respect to relative contributions from the pathways, even when they predict similar deposition velocities, or agree with respect to the relative contributions but predict different deposition velocities. Both stomatal and nonstomatal uptake contribute to the large model spread across sites. Our findings are the beginning of results from AQMEII4 Activity 2, which brings scientists who model air quality and dry deposition together with scientists who measure ozone fluxes to evaluate and improve dry deposition schemes in the chemical transport models used for research, planning, and regulatory purposes.

2.
Materials (Basel) ; 16(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687500

RESUMO

This paper proposes a new technology of superimposed billet extrusion-forming for thin-walled magnesium alloy tubes. This process represents an improvement over the current technology, which suffers from low production efficiency, poor forming accuracy, and low material utilization. We developed a detailed forming process and mold structure, in which the excess material of the front billet is extruded out of the mold as the rear billet pushes on the front one. Through continuous extrusion, online direct water cooling, and cutting, the automated continuous production of thin-walled tubules is achieved. The optimization of the mandrel structure and its hovering action is also included, with the aim of improving the lifespan of the mandrel and the accuracy of tube size. The numerical simulation method evaluates the effect of the die angle (α) on the tube, formed using FORGE NXT 1.1. The results show that for an angle of less than 70°, the defect length of the tube decreases as the die angle decreases, forming an ordered flow of superimposed billets. If the angle is less than 50°, the two adjacently formed tubes separate automatically, with no need for the subsequent cutting process. The best choice of die angle is about 50°, which takes into account the effect of the change in extrusion force.

3.
Biomed Pharmacother ; 165: 115162, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37467648

RESUMO

When activated by unconjugated bilirubin (UCB), inflammatory mediators such as IL - 18 and TNF contribute to the neurotoxicity and ototoxicity observed in severe neonatal hyperbilirubinemia. However, in cell and molecular level, the regulation and mechanism of UCB-induced ototoxicity are remained unclear. In this study, 7-day-old mammary rats were exposed to various concentrations of UCB to imitate the infant auditory damage. The auditory brainstem response result (ABR) indicated severe hearing loss, which occurred with increasing concentration. Morphological analysis of organotypic cochlear cultures treated with different concentrations of UCB indicated that auditory nerve fibers (ANF) were demyelinated and the density of spiral ganglion neurons (SGN) were decreased. In addition, HEI-OC1 cells treated with different concentrations of UCB showed severe necrosis by Flow Cytometry. The morphologic feature of pyroptosis has been observed by scanning electronic microscope. Cleaved Caspase-1, GSDMD and NLRP3 expression were significantly increased in cochlear explants with UCB-induced. To further clarify the molecular mechanism of UCB-induced inner ear cell pyroptosis, specific inhibitors of pyroptosis were applied, the protein associated with pyrotosis such as Cleaved Caspase-1, GSDMD, ASC, IL-18 and NLRP3 were significantly lower than the group with UCB alone. All the data above indicated that ERK /NLRP3/GSDMD signaling pathway involved in UCB-induced ototoxicity.


Assuntos
Hiperbilirrubinemia Neonatal , Ototoxicidade , Animais , Ratos , Bilirrubina/metabolismo , Caspase 1 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais Recém-Nascidos , Modelos Animais de Doenças
4.
Nanoscale Res Lett ; 11(1): 463, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27757944

RESUMO

In present work, two-dimensional g-C3N4 was used to modify TiO2 nanorod array photoanodes for CdS quantum dot-sensitized solar cells (QDSSCs), and the improved cell performances were reported. Single crystal TiO2 nanorods are prepared by hydrothermal method on transparent conductive glass and spin-coated with g-C3N4. CdS quantum dots were deposited on the g-C3N4 modified TiO2 photoanodes via successive ionic layer adsorption and reaction method. Compared with pure TiO2 nanorod array photoanodes, the g-C3N4 modified photoanodes showed an obvious improvement in cell performances, and a champion efficiency of 2.31 % with open circuit voltage of 0.66 V, short circuit current density of 7.13 mA/cm2, and fill factor (FF) of 0.49 was achieved, giving 23 % enhancement in cell efficiency. The improved performances were due to the matching conduction bands and valence bands of g-C3N4 and TiO2, which greatly enhanced the separation and transfer of the photogenerated electrons and holes and effectively suppressed interfacial recombination. Present work provides a new direction for improving performance of QDSSCs.

5.
Light Sci Appl ; 5(10): e16130, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167120

RESUMO

Commonly used energy storage devices include stacked layers of active materials on two-dimensional sheets, and the limited specific surface area restricts the further development of energy storage. Three-dimensional (3D) structures with high specific surface areas would improve device performance. Herein, we present a novel procedure to fabricate macroscopic, high-quality, nitrogen-doped, 3D graphene/nanoparticle aerogels. The procedure includes vacuum filtration, freeze-drying, and plasma treatment, which can be further expanded for large-scale production of nitrogen-doped, graphene-based aerogels. The behavior of the supercapacitor is investigated using a typical nitrogen-doped graphene/Fe3O4 nanoparticle 3D structure (NG/Fe3O4). Compared with 3D graphene/Fe3O4 structures prepared by the traditional hydrothermal method, the NG/Fe3O4 supercapacitor prepared by the present method has a 153% improvement in specific capacitance, and there is no obvious decrease in specific capacitance after 1000 cycles. The present work provides a new and facile method to produce large-scale, 3D, graphene-based materials with high specific capacitance for energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...