Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 24(4): 291-301, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24946015

RESUMO

This document was prepared by the Safety Pharmacology Subcommittee of the Oligonucleotide Safety Working Group (OSWG), a group of industry and regulatory scientists involved in the development and regulation of therapeutic oligonucleotides. The mission of the Subcommittee was to develop scientific recommendations for the industry regarding the appropriate scope and strategies for safety pharmacology evaluations of oligonucleotides (ONs). These recommendations are the consensus opinion of the Subcommittee and do not necessarily reflect the current expectations of regulatory authorities. 1) Safety pharmacology testing, as described in the International Conference on Harmonisation (ICH) S7 guidance, is as applicable to ONs as it is to small molecule drugs and biotherapeutics. 2) Study design considerations for ONs are similar to those for other classes of drugs. In general, as with other therapeutics, studies should evaluate the drug product administered via the clinical route. Species selection should ideally consider relevance of the model with regard to the endpoints of interest, pharmacological responsiveness, and continuity with the nonclinical development program. 3) Evaluation of potential effects in the core battery (cardiovascular, central nervous, and respiratory systems) is recommended. In general: a. In vitro human ether-a-go-go-related gene (hERG) testing does not provide any specific value and is not warranted. b. Emphasis should be placed on in vivo evaluation of cardiovascular function, typically in nonhuman primates (NHPs). c. Due to the low level of concern, neurologic and respiratory function can be assessed concurrently with cardiovascular safety pharmacology evaluation in NHPs, within repeat-dose toxicity studies, or as stand-alone studies. In the latter case, rodents are most commonly used. 4) Other dedicated safety pharmacology studies, beyond the core battery, may have limited value for ONs. Although ONs can accumulate in the kidney and liver, evaluation of functional changes in these organs, as well as gastrointestinal (GI) and unintended "pro-inflammatory" effects, may be best evaluated during repeat-dose toxicity studies. Broad receptor- or ligand-binding profiling has not historically been informative for most ON subclasses, but may have value for investigative purposes.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Oligonucleotídeos/toxicidade , Segurança do Paciente , Animais , Doenças Cardiovasculares/prevenção & controle , Consenso , Gastroenteropatias/prevenção & controle , Humanos , Doenças Neurodegenerativas/prevenção & controle , Oligonucleotídeos/farmacocinética , Guias de Prática Clínica como Assunto , Projetos de Pesquisa
2.
Toxicol Sci ; 131(1): 292-301, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22982684

RESUMO

Cardiotoxicity is one of the leading causes of drug attrition. Current in vitro models insufficiently predict cardiotoxicity, and there is a need for alternative physiologically relevant models. Here we describe the gene expression profile of human-induced pluripotent stem cell-derived cardiocytes (iCC) postthaw over a period of 42 days in culture and compare this profile to human fetal and adult as well as adult cynomolgus nonhuman primate (NHP, Macaca fascicularis) heart tissue. Our results indicate that iCC express relevant cardiac markers such as ion channels (SCN5A, KCNJ2, CACNA1C, KCNQ1, and KCNH2), tissue-specific structural markers (MYH6, MYLPF, MYBPC3, DES, TNNT2, and TNNI3), and transcription factors (NKX2.5, GATA4, and GATA6) and lack the expression of stem cell markers (FOXD3, GBX2, NANOG, POU5F1, SOX2, and ZFP42). Furthermore, we performed a functional evaluation of contractility of the iCC and showed functional and pharmacological correlations with myocytes isolated from adult NHP hearts. These results suggest that stem cell-derived cardiocytes may represent a novel in vitro model to study human cardiac toxicity with potential ex vivo and in vivo translation.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Transcriptoma/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Humanos , Macaca fascicularis , Miócitos Cardíacos/metabolismo
3.
J Pharmacol Toxicol Methods ; 63(3): 304-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21419854

RESUMO

INTRODUCTION: Delayed ventricular repolarisation is manifested electrocardiographically in a prolongation of the QT interval. Such prolongation can lead to potentially fatal Torsades de Pointes. Moxifloxacin is a fluoroquinolone antibiotic which has been associated with QT prolongation and, as a result, is recommended by the regulatory authorities as a positive control in thorough QT studies performed to evaluate the potential of new chemical entities to induce QT prolongation in humans. The sensitivity of the cynomolgus monkey as a quantitative preclinical predictor of the PK-QTc relationship is discussed. METHODS: Cardiovascular monitoring was performed in the telemetered cynomolgus monkey for 22 h following oral administration of Moxifloxacin (10, 30 and 90 mg/kg) or placebo. QTc was derived using an individual animal correction factor (ICAF): RR-I = QT-I--(RR-550)* (IACF). A PKPD analysis was performed to quantify the increase in placebo-adjusted QTc) elicited by administration of Moxifloxacin. In addition, the rate of onset of hERG channel blockade of Moxifloxacin was compared to Dofetilide by whole cell patch clamp technique in HEK-293 cells stably expressing the hERG channels. RESULTS: Moxifloxacin induced a dose dependent increase in QTc). A maximum increase of 28 ms was observed following administration of 90 mg/kg Moxifloxacin. The corresponding maximum free systemic exposure was 18µM. Interrogation of the PK-QTc relationship indicated a direct relationship between the systemic exposure of Moxifloxacin and increased QTc. A linear PKPD model was found to describe this relationship whereby a 1.5 ms increase in QTc was observed for every 1 µM increase in free systemic exposure. DISCUSSION: The exposure dependent increases in QTc observed following oral administration of Moxifloxacin to the cynomolgus monkey are in close agreement with those previously reported in human subjects. A direct effect linear relationship was found to be conserved in both species. As a result of the quantitative agreement in both species, the utility of the telemetered cynomolgus monkey as a preclinical predictor of QTc) prolongation is exemplified. Furthermore, the rate of onset of hERG channel blockade observed in patch clamp offers a mechanistic insight into the relative rates of channel blockade observed in vivo with both Moxifloxacin and Dofetilide.


Assuntos
Compostos Aza/farmacologia , Compostos Aza/farmacocinética , Modelos Animais de Doenças , Síndrome do QT Longo/induzido quimicamente , Macaca fascicularis , Quinolinas/farmacologia , Quinolinas/farmacocinética , Potenciais de Ação/efeitos dos fármacos , Administração Oral , Animais , Compostos Aza/sangue , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Canal de Potássio ERG1 , Eletrocardiografia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Fluoroquinolonas , Humanos , Síndrome do QT Longo/sangue , Síndrome do QT Longo/metabolismo , Moxifloxacina , Técnicas de Patch-Clamp , Ligação Proteica , Quinolinas/sangue , Telemetria , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...