Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(24): 17086-17104, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38079537

RESUMO

A set of focused analogues have been generated around a lead indirect adenosine monophosphate-activated kinase (AMPK) activator to improve the rat clearance of the molecule. Analogues were focused on inhibiting amide hydrolysis by the strategic placement of substituents that increased the steric environment about the secondary amide bond between 4-aminopiperidine and pyridine-5-carboxylic acid. It was found that placing substituents at position 3 of the piperidine ring and position 4 of the pyridine could all improve clearance without significantly impacting on-target potency. Notably, trans-3-fluoropiperidine 32 reduced rat clearance from above liver blood flow to 19 mL/min/kg and improved the hERG profile by attenuating the basicity of the piperidine moiety. Oral dosing of 32 activated AMPK in mouse liver and after 2 weeks of dosing improved glucose handling in a db/db mouse model of Type II diabetes as well as lowering fasted glucose and insulin levels.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Ratos , Animais , Proteínas Quinases Ativadas por AMP , Diamida , Glucose , Piridinas/farmacologia , Piperidinas , Amidas
2.
Bioorg Med Chem ; 71: 116951, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973281

RESUMO

Using an in-cell AMPK activation assay, we have developed structure-activity relationships around a hit pyridine dicarboxamide 5 that resulted in 40 (R419). A particular focus was to retain the on-target potency while also improving microsomal stability and reducing off-target activities, including hERG inhibition. We were able to show that removing a tertiary amino group from the piperazine unit of hit compound 5 improved microsomal stability while hERG inhibition was improved by modifying the substitution of the central core pyridine ring. The SAR resulted in 40, which continues to maintain on-target potency. Compound 40 was able to activate AMPK in vivo after oral administration and showed efficacy in animal models investigating activation of AMPK as a therapy for glucose control (both db/db and DIO mouse models).


Assuntos
Proteínas Quinases Ativadas por AMP , Hipoglicemiantes , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ativação Enzimática , Hipoglicemiantes/farmacologia , Camundongos , Piridinas , Relação Estrutura-Atividade
3.
J Clin Invest ; 130(4): 1879-1895, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874105

RESUMO

Few therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we found that the microRNA (miRNA) cluster including miR181ab1 is a key modulator of KRAS-driven oncogenesis. Ablation of Mir181ab1 in genetically engineered mouse models of Kras-driven lung and pancreatic cancer was deleterious to tumor initiation and progression. Expression of both resident miRNAs in the Mir181ab1 cluster, miR181a1 and miR181b1, was necessary to rescue the Mir181ab1-loss phenotype, underscoring their nonredundant role. In human cancer cells, depletion of miR181ab1 impaired proliferation and 3D growth, whereas overexpression provided a proliferative advantage. Lastly, we unveiled miR181ab1-regulated genes responsible for this phenotype. These studies identified what we believe to be a previously unknown role for miR181ab1 as a potential therapeutic target in 2 highly aggressive and difficult to treat KRAS-mutated cancers.


Assuntos
Carcinogênese/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Família Multigênica , Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Neoplásico/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Neoplasias Experimentais/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Neoplásico/genética
4.
BMC Res Notes ; 7: 674, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25252968

RESUMO

BACKGROUND: The novel small molecule R118 and the biguanide metformin, a first-line therapy for type 2 diabetes (T2D), both activate the critical cellular energy sensor 5'-AMP-activated protein kinase (AMPK) via modulation of mitochondrial complex I activity. Activation of AMPK results in both acute responses and chronic adaptations, which serve to restore energy homeostasis. Metformin is thought to elicit its beneficial effects on maintenance of glucose homeostasis primarily though impacting glucose and fat metabolism in the liver. Given the commonalities in their mechanisms of action and that R118 also improves glucose homeostasis in a murine model of T2D, the effects of both R118 and metformin on metabolic pathways in vivo were compared in order to determine whether R118 elicits its beneficial effects through similar mechanisms. RESULTS: Global metabolite profiling of tissues and plasma from mice with diet-induced obesity chronically treated with either R118 or metformin revealed tissue-selective effects of each compound. Whereas metformin treatment resulted in stronger reductions in glucose and lipid metabolites in the liver compared to R118, upregulation of skeletal muscle glycolysis and lipolysis was apparent only in skeletal muscle from R118-treated animals. Both compounds increased ß-hydroxybutyrate levels, but this effect was lost after compound washout. Metformin, but not R118, increased plasma levels of metabolites involved in purine metabolism. CONCLUSIONS: R118 treatment but not metformin resulted in increased glycolysis and lipolysis in skeletal muscle. In contrast, metformin had a greater impact than R118 on glucose and fat metabolism in liver tissue.


Assuntos
Adenilato Quinase/metabolismo , Dieta Hiperlipídica , Ativadores de Enzimas/uso terapêutico , Metformina/uso terapêutico , Obesidade/metabolismo , Animais , Ativadores de Enzimas/farmacologia , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico
5.
Am J Physiol Heart Circ Physiol ; 306(8): H1128-45, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24561866

RESUMO

Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Dieta Hiperlipídica , Ativadores de Enzimas/administração & dosagem , Obesidade/complicações , Doenças Vasculares Periféricas/fisiopatologia , Esforço Físico/fisiologia , Envelhecimento , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Arginina/análogos & derivados , Arginina/sangue , Cilostazol , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Humanos , Claudicação Intermitente/complicações , Claudicação Intermitente/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase Tipo III/metabolismo , Doenças Vasculares Periféricas/etiologia , Inibidores da Fosfodiesterase 3/administração & dosagem , Tetrazóis/administração & dosagem , Vasodilatadores
6.
PLoS One ; 8(12): e81870, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339975

RESUMO

Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both (13)C-palmitate and (13)C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias Hepáticas/metabolismo , Células Musculares/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Camundongos , Mitocôndrias Hepáticas/patologia , Células Musculares/patologia , Oxirredução/efeitos dos fármacos , Palmitatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia
7.
Vitam Horm ; 80: 389-407, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19251045

RESUMO

Insulin receptor substrate 2 (IRS-2) is a key molecule in insulin signaling pathway, serving as an adaptor protein to insulin receptor to activate downstream kinase cascades, including MAP kinase and PI-3 kinase cascades. While reduced IRS-2 expression is tightly associated with diabetes and insulin resistance in various rodent diabetic models, this gene is also suggested to play a critical role in reproductive system and pancreas development. Recently, IRS-2 is demonstrated to be actively involved in lifespan regulation. In this chapter, we attempt to give a brief review of what we have learned about this molecule in metabolism and growth.


Assuntos
Envelhecimento/fisiologia , Diabetes Mellitus/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas Substratos do Receptor de Insulina/química , Proteínas Substratos do Receptor de Insulina/genética , Invertebrados , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...