Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(44): 16895-16905, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37870506

RESUMO

Natural organic matter (NOM) exhibits a distinctive electron-donating capacity (EDC) that serves a pivotal role in the redox reactions of contaminants and minerals through the transformation of electron-donating phenolic moieties. However, the ambiguity of the molecular transformation pathways (MTPs) that engender the EDC during NOM oxidation remains a significant issue. Here, MTPs that contribute to EDC were investigated by identifying the oxidized products of phenolic model compounds and NOM samples in direct or mediated electrochemical oxidation (DEO or MEO, respectively) using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). It was found that the oxidation of newly formed phenolic-OH (ArOH) and the oxidative coupling reaction of the phenoxy radical are the main MTPs that directly contribute to EDC, in addition to the transformation of hydroquinones to quinones. Notably, the oxidative coupling reaction of ArOH contributed at least 22-42% to the EDC. Ferulic acid-like structures can also directly contribute to EDC by incorporating H2O into their acrylic substituents. Furthermore, the opening of C rings can indirectly attenuate the EDC through structural alterations in the electron-donating process of NOM. Decarboxylation can either weaken or enhance the EDC depending on the structure of the phenolic moieties in NOM. These findings suggest that the EDC of NOM is a comprehensive result of multiple NOM MTPs, involving not only ArOH oxidation but also the addition of H2O to olefinic bonds and bond-breaking reactions. Our work provides molecular evidence that aids in the comprehension of the multiple EDC-associated transformation pathways of NOM.


Assuntos
Elétrons , Oxirredução , Espectrometria de Massas
2.
Environ Sci Technol ; 57(31): 11357-11372, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37493521

RESUMO

Biochar, a carbon (C)-rich material obtained from the thermochemical conversion of biomass under oxygen-limited environments, has been proposed as one of the most promising materials for C sequestration and climate mitigation in soil. The C sequestration contribution of biochar hinges not only on its fused aromatic structure but also on its abiotic and biotic reactions with soil components across its entire life cycle in the environment. For instance, minerals and microorganisms can deeply participate in the mineralization or complexation of the labile (soluble and easily decomposable) and even recalcitrant fractions of biochar, thereby profoundly affecting C cycling and sequestration in soil. Here we identify five key issues closely related to the application of biochar for C sequestration in soil and review its outstanding advances. Specifically, the terms use of biochar, pyrochar, and hydrochar, the stability of biochar in soil, the effect of biochar on the flux and speciation changes of C in soil, the emission of nitrogen-containing greenhouse gases induced by biochar production and soil application, and the application barriers of biochar in soil are expounded. By elaborating on these critical issues, we discuss the challenges and knowledge gaps that hinder our understanding and application of biochar for C sequestration in soil and provide outlooks for future research directions. We suggest that combining the mechanistic understanding of biochar-to-soil interactions and long-term field studies, while considering the influence of multiple factors and processes, is essential to bridge these knowledge gaps. Further, the standards for biochar production and soil application should be widely implemented, and the threshold values of biochar application in soil should be urgently developed. Also needed are comprehensive and prospective life cycle assessments that are not restricted to soil C sequestration and account for the contributions of contamination remediation, soil quality improvement, and vegetation C sequestration to accurately reflect the total benefits of biochar on C sequestration in soil.


Assuntos
Sequestro de Carbono , Solo , Solo/química , Carvão Vegetal/química , Carbono
3.
Micromachines (Basel) ; 14(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37374783

RESUMO

We systematically studied several of the most traditional hollow-core anti-resonant fiber (HC-ARF) structures, with the aim of achieving low confinement loss, single-mode performance, and high insensitivity to bending in the 2 µm band. Moreover, the propagation loss of fundamental mode (FM), higher-order mode (HOMs), and the higher-order mode extinction ratio (HOMER) under different geometric parameters were studied. Analysis showed that the confinement loss of the six-tube nodeless hollow-core anti-resonant fiber at 2 µm was 0.042 dB/km, and its higher-order mode extinction ratio was higher than 9000. At the same time, a confinement loss of 0.040 dB/km at 2 µm was achieved in the five-tube nodeless hollow-core anti-resonant fiber, and its higher-order mode extinction ratio was higher than 2700.

4.
Sci Total Environ ; 848: 157560, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35901870

RESUMO

Biochar can mediate extracellular electron transfer (EET) of Shewanella oneidensis MR-1 and subsequently facilitate dissimilatory reduction of iron(III) minerals. Previous studies mainly focused on the interaction of biochar and membrane cytochrome complexes to reveal the mediating mechanisms between biochar and S. oneidensis MR-1. However, the influence of biochar on the production and activity of extracellular polymeric substances (EPS) has long been neglected, despite the fact that EPS are commonly exudated by S. oneidensis MR-1 and can participate in a variety of electron transfer processes due to their redox activity. Here, we performed a series of microbial ferrihydrite reduction experiments in combination with electrochemical voltametric and impedance analyses to investigate the role of biochar in the formation and transformation of cell EPS during EET. Results showed that the added biochar not only functioned as an electron shuttle facilitating electron transfer, but also induced the secretion of five times more EPS by S. oneidensis MR-1, leading to a 1.4-fold faster ferrihydrite reduction in comparison with biochar-free setups. We further extracted the secreted EPS and found that the proportion of redox-active exoproteins was significantly (p < 0.05) increased in the EPS and resulted in a higher electron exchange capacity in secreted EPS. Such increased exoprotein content also induced a higher ratio of exoprotein to exopolysaccharide, which largely dropped diffusion and electron transfer impedance of EPS to 1.1 and 18 Ω, respectively, and accelerated the EET and thus the ferrihydrite reduction. Overall, our findings revealed the interactions between biochar and EPS matrices, which could potentially play a critical role in EET processes in both environmental or biotechnological systems.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Compostos Férricos , Carvão Vegetal , Citocromos , Ferro , Minerais , Shewanella
5.
Nat Commun ; 12(1): 4119, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226558

RESUMO

Northern peatlands are experiencing more frequent and severe fire events as a result of changing climate conditions. Recent studies show that such a fire-regime change imposes a direct climate-warming impact by emitting large amounts of carbon into the atmosphere. However, the fires also convert parts of the burnt biomass into pyrogenic carbon. Here, we show a potential climate-cooling impact induced by fire-derived pyrogenic carbon in laboratory incubations. We found that the accumulation of pyrogenic carbon reduced post-fire methane production from warm (32 °C) incubated peatland soils by 13-24%. The redox-cycling, capacitive, and conductive electron transfer mechanisms in pyrogenic carbon functioned as an electron snorkel, which facilitated extracellular electron transfer and stimulated soil alternative microbial respiration to suppress methane production. Our results highlight an important, but overlooked, function of pyrogenic carbon in neutralizing forest fire emissions and call for its consideration in the global carbon budget estimation.


Assuntos
Carbono/metabolismo , Elétrons , Metano/biossíntese , Incêndios Florestais , Bactérias , Biomassa , Dióxido de Carbono , Clima , Mudança Climática , Ecossistema , Incêndios , Geobacter , Laboratórios , Solo
6.
Environ Sci Technol ; 54(17): 10646-10653, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867481

RESUMO

The mechanism of long-distance electron transfer via redox-active particulate natural organic matter (NOM) is still unclear, especially considering its aggregated nature and the resulting low diffusivity of its quinone- and hydroquinone-containing molecules. Here we conducted microbial iron(III) mineral reduction experiments in which anthraquinone-2,6-disulfonate (AQDS, a widely used analogue for quinone- and hydroquinone-containing molecules in NOM) was immobilized in agar to achieve a spatial separation between the iron-reducing bacteria and ferrihydrite mineral. Immobilizing AQDS in agar also limited its diffusion, which resembled electron-transfer behavior of quinone- and hydroquinone-containing molecules in particulate NOM. We found that, although the diffusion coefficient of the immobilized AQDS/AH2QDS was 10 times lower in agar than in water, the iron(III) mineral reduction rate (1.60 ± 0.28 mmol L-1 Fe(II) d-1) was still comparable in both media, indicating the existence of another mechanism that accelerated the electron transfer under low diffusive conditions. We found the correlation between the heterogeneous electron-transfer rate constant (10-3 cm s-1) and the diffusion coefficient (10-7 cm2 s-1) fitting well with the "diffusion-electron hopping" model, suggesting that electron transfer via the immobilized AQDS/AH2QDS couple was accomplished through a combination of diffusion and electron hopping. Electron hopping increased the diffusion concentration gradient up to 106-fold, which largely promoted the overall electron-transfer rate during microbial iron(III) mineral reduction. Our results are helpful to explain the electron-transfer mechanisms in particulate NOM.


Assuntos
Compostos Férricos , Ferro , Antraquinonas , Elétrons , Hidroquinonas , Minerais , Oxirredução , Quinonas
7.
Environ Sci Technol ; 54(7): 4131-4139, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32108470

RESUMO

Redox-active organic molecules such as anthraquinone-2,6-disulfonate (AQDS) and natural organic matter (NOM) can act as electron shuttles thus facilitating electron transfer from Fe(III)-reducing bacteria (FeRB) to terminal electron acceptors such as Fe(III) minerals. In this research, we examined the length scale over which this electron shuttling can occur. We present results from agar-solidified experimental incubations, containing either AQDS or NOM, where FeRB were physically separated from ferrihydrite or goethite by 2 cm. Iron speciation and concentration measurements coupled to a diffusion-reaction model highlighted clearly Fe(III) reduction in the presence of electron shuttles, independent of the type of FeRB. Based on our fitted model, the rate of ferrihydrite reduction increased from 0.07 to 0.19 µmol d-1 with a 10-fold increase in the AQDS concentration, highlighting a dependence of the reduction rate on the electron-shuttle concentration. To capture the kinetics of Fe(II) production, the effective AQDS diffusion coefficient had to be increased by a factor of 9.4. Thus, we postulate that the 2 cm electron transfer was enabled by a combination of AQDS molecular diffusion and an electron hopping contribution from reduced to oxidized AQDS molecules. Our results demonstrate that AQDS and NOM can drive microbial Fe(III) reduction across 2 cm distances and shed light on the electron transfer process in natural anoxic environments.


Assuntos
Antraquinonas , Compostos Férricos , Transporte de Elétrons , Ferro , Minerais , Oxirredução
8.
Sci Total Environ ; 703: 135515, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31761354

RESUMO

Microbial Fe(III) reduction plays an important role for biogeochemical carbon and iron cycling in sediments and soils. Biochar is used as a soil amendment to increase fertility and lower N2O/CO2 emissions. It is redox-active and can stimulate microbial Fe(III) mineral reduction. It is currently unknown, however, how the aggregation of cells and Fe(III) minerals with biochar particles influence microbial Fe(III) reduction. Therefore, we determined rates and extent of ferrihydrite (Fh) reduction in S. oneidensis MR-1 cell suspensions with different particles sizes of wood-derived Swiss biochar and KonTiki biochar at different biochar/Fh ratios. We found that at small biochar particle size and high biochar/Fh ratios, the biochar, MR-1 cells and Fh closely aggregated, therefore addition of biochar stimulated electron transfer and microbial Fh reduction. In contrast, large biochar particles and low biochar/Fh ratios inhibited the electron transfer and Fe(III) reduction due to the lack of effective aggregation. These results suggest that for stimulating Fh reduction, a certain biochar particle size and biochar/Fh ratio is necessary leading to a close aggregation of all phases. This aggregation favors electron transfer from cells to Fh via redox cycling of the electron donating and accepting functional groups of biochar and via direct electron transfer through conductive biochar carbon matrices. These findings improve our understanding of electron transfer between microorganisms and Fe(III) minerals via redox-active biochar and help to evaluate the impact of biochar on electron transfer processes in the environment.


Assuntos
Carvão Vegetal/química , Compostos Férricos/metabolismo , Microbiologia do Solo , Elétrons , Ferro , Minerais , Oxirredução , Solo
9.
Opt Express ; 26(12): 15138-15152, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114765

RESUMO

Solar wind magnetosphere ionosphere link explorer (SMILE) scientific satellite is dedicated to observe solar wind-magnetosphere coupling. The key payload, soft X-ray imager (SXI), is designed to map the location, shape, and motion of dayside magnetospheric boundaries by Angel-type lobster-eye optical system. Contrast to traditional Wolter-type X-ray telescope with very narrow field-of-view, the lobster-eye-type optics has a unique capability of providing wide field of view for panoramic imaging with moderate spatial resolution in soft X-ray band. Since the lobster-eye optics focus X-ray by reflecting of the inner walls of the micro-channel array shaped in spherical surface, traditional optical design tools can't well match to the requirements of simulation for SXI. In this paper, a 3D Angel-type lobster-eye model is designed for simulation of lobster-eye optics and its capability is demonstrated for the applying scenarios including the imaging of point light source, surface light source with uniform and non-uniform intensity distribution. The simulation results are well consistent with those of theoretical estimate.

10.
Environ Sci Technol ; 52(15): 8538-8547, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29968467

RESUMO

Pyrogenic carbon contains redox-active functional groups and polyaromatic carbon matrices that are both capable of transferring electrons. Several techniques have been explored to characterize the individual electron transfer process of either functional groups or carbon matrices individually. However, simultaneous analysis of both processes remains challenging. Using an approach that employs a four-electrode configuration and dual-interface electron transfer detection, we distinguished the electron transfer by functional groups from the electron transfer by carbon matrices and simultaneously quantified their relative contribution to the total electron transfer to and from pyrogenic carbon. Results show that at low to intermediate pyrolysis temperatures (400-500 °C), redox cycling of functional groups is the major mechanism with a contribution of 100-78% to the total electron transfer; whereas at high temperatures (650-800 °C), direct electron transfer of carbon matrices dominates electron transfer with a contribution of 87-100%. Spectroscopic and diffraction analyses of pyrogenic carbon support the electrochemical measurements by showing a molecular-level structural transition from an enrichment in functional groups to an enrichment in nanosized graphene domains with increasing pyrolysis temperatures. The method described in this study provides a new analytical approach to separately quantify the relative importance of different electron transfer pathways in natural pyrogenic carbon and has potential applications for engineered carbon materials such as graphene oxides.


Assuntos
Carbono , Grafite , Transporte de Elétrons , Elétrons , Oxirredução
11.
J Hazard Mater ; 348: 100-108, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29422192

RESUMO

Biochar application has attracted great attention due to its diverse uses and benefits in the fields of environmental management and agriculture. Biochar modifies the composition of dissolved organic matter (DOM) in soil, which directly or indirectly controls the mobility of metal contaminants and their bioaccumulation. In this study, ten different hydrothermal biochars pyrolysed from mushroom waste (MSBC), soybean straw (SBBC), sewage sludge (SSBC), peanut shells (PNBC) and rice straw (RSBC) at two pyrolysis temperatures (200 °C and 350 °C) were used to investigate DOM changes in soil solution and their effects on metal availability and bioaccumulation. Biochar induced modification of soil DOM which was characterized by spectroscopic analysis of water soluble organic carbon, specific absorbance (SUVA254), UV-vis absorption, spectral slope (SR) and the absorption coefficient. Regarding rice plant growth, the biochar effects on biomass were greatly varied. Biochars (except for RSBC and MSBC) prepared at high temperature significantly (P ≤ 0.05) suppressed the availability of As and Cd in soil and their subsequent bioaccumulation in rice plants. The highest reduction (88%) in bioaccumulated As was observed in rice grown on soil amended with SBBC prepared at 350 °C (the highest temperature for hydrothermal technique). The addition of biochars (except RSBC and MSBC) prepared at high temperature markedly (p < 0.05) decreased AsIII (30-92%), while the effects on dimethylarsenic acid (DMA) and arsenate (AsV) concentrations were not significant except for SSBC350 (prepared at 350 °C) treatment. These results highlight the potential of biochar-DOM interactions as an important mechanism for suppressing the mobility and bioaccumulation of As and Cd in biochar-amended paddy agricultural systems.


Assuntos
Arsênio/metabolismo , Cádmio/metabolismo , Carvão Vegetal , Oryza/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Solubilidade , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
12.
Nat Commun ; 8: 14873, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361882

RESUMO

Surface functional groups constitute major electroactive components in pyrogenic carbon. However, the electrochemical properties of pyrogenic carbon matrices and the kinetic preference of functional groups or carbon matrices for electron transfer remain unknown. Here we show that environmentally relevant pyrogenic carbon with average H/C and O/C ratios of less than 0.35 and 0.09 can directly transfer electrons more than three times faster than the charging and discharging cycles of surface functional groups and have a 1.5 V potential range for biogeochemical reactions that invoke electron transfer processes. Surface functional groups contribute to the overall electron flux of pyrogenic carbon to a lesser extent with greater pyrolysis temperature due to lower charging and discharging capacities, although the charging and discharging kinetics remain unchanged. This study could spur the development of a new generation of biogeochemical electron flux models that focus on the bacteria-carbon-mineral conductive network.

13.
J Hazard Mater ; 176(1-3): 919-25, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20005625

RESUMO

Phytoremediation is an emerging technology for the remediation of polycyclic aromatic hydrocarbons (PAHs). In this study, pot experiments were conducted to evaluate the efficacy of phytoremediation of phenanthrene and pyrene in a typical low organic matter soil (3.75 g kg(-1)), and the contribution proportions of abiotic losses, microbes, plant roots, and root exudates were ascertained during the PAHs dissipation. The results indicated that contribution of abiotic losses from this soil was high both for phenanthrene (83.4%) and pyrene (57.2%). The contributions of root-exudates-enhanced biodegradation of phenanthrene (15.5%) and pyrene (21.3%) were higher than those of indigenous microbial degradation. The role of root exudates on dissipation of phenanthrene and pyrene was evident in this experiment. By the way, with the increasing of ring numbers in PAHs structures, the root-exudates-enhanced degradation became more and more important. BIOLOG-ECO plate analysis indicated that microbial community structure of the soil receiving root exudates had changed. The removal efficiency and substrate utilization rate in the treatment with plant roots were lower than the treatment only with root exudates, which suggested that possible competition between roots and microbes for nutrients had occurred in a low organic matter soil.


Assuntos
Biodegradação Ambiental , Raízes de Plantas/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Fenantrenos/metabolismo , Pirenos/metabolismo , Solo
14.
Environ Pollut ; 157(2): 410-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18977060

RESUMO

Remediation programmes are considered to be complete when human risk-based criteria are met. However, these targets are often unsatisfied with the ecological parameters that may be important with regard to future soil use. Five soil subsamples, collecting along a pilot-scale soil column after electrokinetic treatment, were studied, from which about 42.0%-93.3% soil Cu had been successfully removed. A series of biological assays including soil microbial biomass carbon, basal soil respiration, soil urease activity, earthworm assays, and seed assays were used to evaluate their ecological risks. The results showed that the bioassay data from the treatment variants did not supposedly reflecting the decreased soil Cu concentrations after the electrokinetic treatment, but were highly correlated with some soil physicochemical characteristics. It suggests that bioassays are necessary to assess the ecotoxicity of soil after electrokinetic treatment.


Assuntos
Cobre/análise , Técnicas Eletroquímicas/métodos , Poluentes do Solo/análise , Animais , Bioensaio/métodos , Biomassa , Físico-Química , Cobre/toxicidade , Germinação/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Projetos Piloto , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/toxicidade , Urease/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...