Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 175: 254-264, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219463

RESUMO

Biogas slurry (BS) is widely considered as a source of organic matter and nutrients for improving soil organic carbon (SOC) sequestration and crop production in agroecosystems. Microbial necromass C (MNC) is considered one of the major precursors of SOC sequestration, which is regulated by soil microbial anabolism and catabolism. However, the microbial mechanisms through which BS application increases SOC accumulation in paddy soils have not yet been elucidated. A 12-year field experiment with four treatments (CK, no fertilizers; CF, chemical fertilizer application; BS1 and BS2, biogas slurry application at two nitrogen rates from BS) was conducted in rice paddy fields. The results showed that long-term BS application had no effect on lignin phenols proportion in SOC relative to CF. In contrast, BS application elevated the MNC contribution to SOC by 15.5-20.5 % compared with the CF treatment. The proportion of fungal necromass C (FNC) to SOC increased by 16.0 % under BS1 and by 25.8 % under BS2 compared with the CF treatment, while no significant difference in bacterial necromass C (BNC) contribution to SOC was observed between the BS and CF treatments. The MNC was more closely correlated with fungal community structures than with bacterial community structures. We further found that fungal genera, Mortierella and Ciliophora, mainly regulated the MNC, FNC and BNC accumulation. Collectively, our results highlighted that fungi play a vital role in SOC storage in paddy soils by regulating MNC formation and accumulation under long-term BS application.


Assuntos
Micobioma , Oryza , Solo/química , Carbono , Biocombustíveis , Lignina , Fertilizantes/análise , Microbiologia do Solo
2.
Chemosphere ; 335: 139051, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37271470

RESUMO

Manure has been considered as a source of soil heavy metal (HM) pollution. However, the long-term impact of manure application on soil HM accumulation have not been well studied. This study tracked the long-term cumulative trends of soil copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) in three soil-crop systems over 5-8 years' application of commercial manure fertilizer. The contribution of different fertilization treatments (CF, chemical fertilizer; T1-T3, manure with different application dosages) to soil HMs pollution risk were assessed. There are accumulating tendencies for Cu, Zn, and Pb in paddy fields, Cu and As in orchard fields, and Zn, As, and Pb in vegetable fields, while the concentrations of As in paddy fields and Zn in orchard fields decreased over time. Manure application significantly influenced the accumulation of Cu, Zn, and As in soils rather than that of Pb. The modeling prediction subsequently revealed that the time required to reach the risk screening values (Cu: 50 mg kg-1; Zn: 200 mg kg-1) for HM content in paddy soil, according to GB15618-2018, decreased from 18.20 years to 7.20 years due to the introduction of Cu and Zn via manure use. Recommend annual manure application dosage was 7.73 t hm-2 y-1 to ensure a 20-year period of clean production in paddy soils, while it was 26.15 t hm-2 y-1 in the orchard soil and 16.23 t hm-2 y-1 in vegetable soil to ensure a 50-year period of clean production, respectively. Overall, the impacts of HMs input by manure application on soil HMs accumulation varied depending on the type of metal and the soil-crop system. The cumulative trends of HMs in soils play a crucial role in determining whether the input of HMs through manure application can lead to the risk of HM pollution.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Solo/química , Fertilizantes/análise , Esterco/análise , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Zinco/análise , Verduras , Compostos Orgânicos , China
3.
Biomed Signal Process Control ; 79: 104099, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35996574

RESUMO

At the end of 2019, a novel coronavirus, COVID-19, was ravaging the world, wreaking havoc on public health and the global economy. Today, although Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is the gold standard for COVID-19 clinical diagnosis, it is a time-consuming and labor-intensive procedure. Simultaneously, an increasing number of individuals are seeking for better alternatives to RT-PCR. As a result, automated identification of COVID-19 lung infection in computed tomography (CT) images may help traditional diagnostic approaches in determining the severity of the disease. Unfortunately, a shortage of labeled training sets makes using AI deep learning algorithms to accurately segregate diseased regions in CT scan challenging. We design a simple and effective weakly supervised learning strategy for COVID-19 CT image segmentation to overcome the segmentation issue in the absence of adequate labeled data, namely LLC-Net. Unlike others weakly supervised work that uses a complex training procedure, our LLC-Net is relatively easy and repeatable. We propose a Local Self-Coherence Mechanism to accomplish label propagation based on lesion area labeling characteristics for weak labels that cannot offer comprehensive lesion areas, hence forecasting a more complete lesion area. Secondly, when the COVID-19 training samples are insufficient, the Scale Transform for Self-Correlation is designed to optimize the robustness of the model to ensure that the CT images are consistent in the prediction results from different angles. Finally, in order to constrain the segmentation accuracy of the lesion area, the Lesion Infection Edge Attention Module is used to improve the information expression ability of edge modeling. Experiments on public datasets demonstrate that our method is more effective than other weakly supervised methods and achieves a new state-of-the-art performance.

4.
Materials (Basel) ; 15(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36363192

RESUMO

In this paper, a series of eutectic hydrated salts was obtained by mixing Na2HPO4·12H2O (DHPD) with K2HPO4·3H2O (DHPT) in different proportions. With the increase in the content of DHPT, the phase transition temperature and melting enthalpy of eutectic hydrated salts decreased gradually. Moreover, the addition of appropriate deionized water improved the thermal properties of eutectic hydrated salts. Colloidal silicon dioxide (SiO2) was selected as the support carrier to adsorb eutectic hydrated salts, and the maximum content of eutectic hydrated salts in composite PCMs was 70%. When the content of the nucleating agent (Na2SiO3·9H2O) was 5%, the supercooling degree of composite PCMs was reduced to the minimum of 1.2 °C. The SEM and FT-IR test results showed that SiO2 and eutectic hydrated salts were successfully combined, and no new substances were formed. When the content of DHPT was 3%, the phase transition temperature and melting enthalpy of composite PCMs were 26.5 °C and 145.3 J/g, respectively. The results of thermogravimetric analysis and heating-cooling cycling test proved that composite PCMs had good thermal reliability and stability. The application performance of composite PCMs in prefabricated temporary houses was investigated numerically. The results indicated that PCM panels greatly increased the Grade I thermal comfort hours and reduced energy consumption. Overall, the composite PCM has great development potential building energy conservation.

5.
Huan Jing Ke Xue ; 43(10): 4789-4800, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224164

RESUMO

The inoculation of antibiotic-degrading bacteria into manure could promote the removal of antibiotics during composting. However, knowledge on the impact of inoculating these antibiotic-degrading bacteria on the composting process and indigenous microbial community succession is still limited. This study assessed the antibiotic removal efficiency in pig manure after inoculating a microbial inoculum with antibiotic-degrading bacteria as the key component. The effect of inoculating this microbial inoculum on the physicochemical dynamics and the succession of the manure bacterial community during composting was also analyzed. The results showed that the antibiotic degradation in pig manure reached 81.95% after inoculating the microbial inoculum. When compared with that in the control, the total concentration of antibiotic residues in manure with the microbial agent inoculated was decreased by 42.18%. During composting, inoculating the microbial inoculum accelerated the temperature rise of compost, favored water loss, and alleviated the release of NH3 and H2S. Moreover, the total nutrient content (nitrogen, phosphorus, and potassium) in the final compost and the germination index of radish seeds increased by 6.80% and 68.33%, respectively, after inoculating this microbial inoculum. Furthermore, inoculating the microbial inoculum increased the content of stable organic carbon in the final compost and decreased the content of recalcitrant substances such as cellulose and hemicellulose. The analysis of the manure bacterial community showed that inoculating the microbial inoculum increased the relative abundances of Actinomycetes and Firmicutes in the compost. In particular, the thermophilic bacteria that was positively related to the compost temperature was increased significantly (P<0.01) after inoculating the microbial inoculum, whereas the relative abundance of pathogenic bacteria was correspondingly decreased. Network analysis of the bacterial coexistence pattern showed that inoculating this microbial inoculum also changed the interaction pattern of indigenous manure bacterial communities, which greatly reduced the complexity and connectivity of the bacterial interaction and improved the ecological relationship between beneficial bacteria and other bacterial communities. The effect of this microbial inoculum on the interaction with manure bacterial community laid a foundation for the establishment of a new and healthier composting bacterial community. This study provides a scientific basis for the application and development of multifunctional antibiotic-degrading microbial agents in manure treatments.


Assuntos
Compostagem , Animais , Antibacterianos/análise , Bactérias , Carbono , Celulose , Esterco/microbiologia , Nitrogênio/análise , Fósforo , Potássio , Solo , Suínos , Água/análise
6.
Food Funct ; 13(17): 8850-8859, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35920249

RESUMO

A number of studies demonstrated that some tea extracts exert inhibitory effects on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). However, the effect of purple tea, a famous tea in China, on osteoclastogenesis remains unclear. In this study, a water-based purple tea extract (PTE) was found to suppress osteoclast formation, osteoclastic resorption pit area formation, and F-actin ring formation within RANKL-stimulated bone marrow macrophages (BMMs). Furthermore, our results demonstrated that PTE could inhibit expression of master transcription factors NFATc1 and c-Fos and their target genes DC-STAMP, Ctsk, and Atp6v0d2. Western blot analysis revealed that PTE treatment led to reduced RANKL-induced phosphorylation of Akt and GSK3ß without altering transient activation of NF-κB and MAPKs (p38, JNK, ERK1/2) signaling. In addition, the results demonstrated that PTE treatment of RANKL-stimulated BMMs could down-regulate Blimp1 expression and up-regulate Irf8 expression. In summary, these results suggest that PTE treatment of RANKL-stimulated BMMs inhibited osteoclast differentiation via modulation of Blimp1-Irf8 and Akt/GSK3ß signaling pathways. Aligning with our in vitro results, in vivo PTE administration ameliorated bone loss in LPS-treated mice. Taken together, the results presented in this work suggest that PTE treatment possesses anti-osteolytic activity.


Assuntos
Reabsorção Óssea , Ligante RANK , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos , Osteogênese , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Chá/metabolismo , Água/metabolismo
7.
J Immunol ; 209(3): 488-497, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35840160

RESUMO

Mammalian GTPase-activating proteins (GAPs) can inhibit innate immunity signaling in a spatiotemporal fashion; however, the role of bacterial GAPs in mediating innate immunity remains unknown. In this study, we show that BspI, a Brucella type IV secretion system (T4SS) effector protein, containing a GAP domain at the C terminus, negatively regulates proinflammatory responses and host protection to Brucella abotus infection in a mouse model. In macrophages, BspI inhibits the activation of inositol-requiring enzyme 1 (IRE1) kinase, but it does not inhibit activation of ATF6 and PERK. BspI suppresses induction of proinflammatory cytokines via inhibiting the activity of IRE1 kinase caused by VceC, a type IV secretion system effector protein that localizes to the endoplasmic reticulum. Ectopically expressed BspI interacts with IRE1 in HeLa cells. The inhibitory function of BspI depends on its GAP domain but not on interaction with small GTPase Ras-associated binding protein 1B (RAB1B). Collectively, these data support a model where BspI, in a GAP domain-dependent manner, inhibits activation of IRE1 to prevent proinflammatory cytokine responses.


Assuntos
Brucelose , Sistemas de Secreção Tipo IV , Animais , Brucella abortus , Brucelose/metabolismo , Citocinas/metabolismo , Células HeLa , Humanos , Inflamação , Mamíferos/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/genética , Sistemas de Secreção Tipo IV/metabolismo
8.
Sci Total Environ ; 841: 156759, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718182

RESUMO

Antibiotic and heavy metal commonly coexist in manure. This study investigated the effect of Cu exposure on antibiotic dissipation in swine manure under two typical temperature (mesophilic and thermophilic) conditions in composting, focusing on biodegradation behaviors. The results showed that Cu promoted the dissipation of norfloxacin and sulfamethazine (SMZ) in solid swine manure under mesophilic conditions at initial concentrations ranging from 407.8 to 1353.0 mg·kg-1 but insignificantly influenced or even inhibited their dissipation under thermophilic conditions. A liquid manure suspension culture experiment was designed to elucidate the response of SMZ biodegradation to Cu. In this manure suspension, biodegradation was the major mechanism for SMZ removal, but SMZ biodegradation was decreased from 23.2 % to 5.5 % when the Cu concentration increased from 0 to 10 mg L-1. Mesophilic and heat-resistant SMZ-degrading bacterial inoculants were subsequently prepared using 21 SMZ-degrading bacteria that were isolated and identified from manure suspension cultures. Inoculating both mesophilic and heat-resistant SMZ-degrading bacterial inoculants enhanced SMZ degradation in sterilized manure suspensions without Cu addition, however only mesophilic SMZ-degrading inoculum improved SMZ degradation after Cu addition. In the presence of Cu, the heat-resistant SMZ-degrading inoculum failed to enhance SMZ removal in manure suspensions. Our findings can help to answer why Cu has varied effects on antibiotic degradation during manure composting.


Assuntos
Cobre , Esterco , Animais , Antibacterianos/metabolismo , Esterco/microbiologia , Sulfametazina , Suspensões , Suínos
9.
Front Immunol ; 13: 880988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558084

RESUMO

Sec-O-glucosylhamaudol (SOG), an active flavonoid compound derived from the root of Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., exhibits analgesic, anti-inflammatory, and high 5-lipoxygenase (5-LO) inhibitory effects. However, its effect on osteoclastogenesis was unclear. We demonstrated that SOG markedly attenuated RANKL-induced osteoclast formation, F-actin ring formation, and mineral resorption by reducing the induction of key transcription factors NFATc1, c-Fos, and their target genes such as TRAP, CTSK, and DC-STAMP during osteoclastogenesis. Western blotting showed that SOG significantly inhibited the phosphorylation of AKT and GSK3ß at the middle-late stage of osteoclastogenesis without altering calcineurin catalytic subunit protein phosphatase-2ß-Aα expression. Moreover, GSK3ß inhibitor SB415286 partially reversed SOG-induced inhibition of osteoclastogenesis, suggesting that SOG inhibits RANKL-induced osteoclastogenesis by activating GSK3ß, at least in part. 5-LO gene silencing by small interfering RNA in mouse bone marrow macrophages markedly reduced RANKL-induced osteoclastogenesis by inhibiting NFATc1. However, it did not affect the phosphorylation of AKT or GSK3ß, indicating that SOG exerts its inhibitory effects on osteoclastogenesis by suppressing both the independent 5-LO pathway and AKT-mediated GSK3ß inactivation. In support of this, SOG significantly improved bone destruction in a lipopolysaccharide-induced mouse model of bone loss. Taken together, these results suggest a potential therapeutic effect for SOG on osteoclast-related bone lysis disease.


Assuntos
Reabsorção Óssea , Osteogênese , Animais , Reabsorção Óssea/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Biochim Biophys Acta Rev Cancer ; 1877(4): 188735, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577141

RESUMO

Colorectal cancer (CRC) is one of the costliest health problems and ranks second in cancer-related mortality in developed countries. With the aid of proteomics, many protein biomarkers for the diagnosis, prognosis, and precise management of CRC have been identified. Furthermore, some protein biomarkers exhibit structural diversity after modifications. Post-translational modifications (PTMs), most of which are catalyzed by a variety of enzymes, extensively increase protein diversity and are involved in many complex and dynamic cellular processes through the regulation of protein function. Accumulating evidence suggests that abnormal PTM events are associated with a variety of human diseases, such as CRC, thus highlighting the need for studying PTMs to discover both the molecular mechanisms and therapeutic targets of CRC. In this review, we begin with a brief overview of the importance of protein PTMs, discuss the general strategies for proteomic profiling of several key PTMs (including phosphorylation, acetylation, glycosylation, ubiquitination, methylation, and citrullination), shift the emphasis to describing the specific methods used for delineating the global landscapes of each of these PTMs, and summarize the recent applications of these methods to explore the potential roles of the PTMs in CRC. Finally, we discuss the current status of PTM research on CRC and provide future perspectives on how PTM regulation can play an essential role in translational medicine for early diagnosis, prognosis stratification, and therapeutic intervention in CRC.


Assuntos
Neoplasias Colorretais , Proteômica , Acetilação , Biomarcadores , Neoplasias Colorretais/diagnóstico , Humanos , Processamento de Proteína Pós-Traducional , Proteômica/métodos
11.
Biomed Signal Process Control ; 76: 103677, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35432578

RESUMO

The widespread of highly infectious disease, i.e., COVID-19, raises serious concerns regarding public health, and poses significant threats to the economy and society. In this study, an efficient method based on deep learning, deep feature fusion classification network (DFFCNet), is proposed to improve the overall diagnosis accuracy of the disease. The method is divided into two modules, deep feature fusion module (DFFM) and multi-disease classification module (MDCM). DFFM combines the advantages of different networks for feature fusion and MDCM uses support vector machine (SVM) as a classifier to improve the classification performance. Meanwhile, the spatial attention (SA) module and the channel attention (CA) module are introduced into the network to improve the feature extraction capability of the network. In addition, the multiple-way data augmentation (MDA) is performed on the images of chest X-ray images (CXRs), to improve the diversity of samples. Similarly, the utilized Grad-CAM++ is to make the features more intuitive, and the deep learning model more interpretable. On testing of a collection of publicly available datasets, results from experimentation reveal that the proposed method achieves 99.89% accuracy in a triple classification of COVID-19, pneumonia, and health X-ray images, there by outperforming the eight state-of-the-art classification techniques.

12.
Ecotoxicol Environ Saf ; 220: 112411, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111661

RESUMO

This study focused on the effects of eight medicinal plant extracts on Solanum nigrum L. potential to accumulate Cd and Pb from soil. These medicinal plants were common and relatively cheap. The eight 10% water extracts were made from the peel of Citrus reticulata Blanco (PCR), fruit of Phyllanthus emblica L. (FPE), root of Pueraria Lobata (Willd.) Ohwi (RPL), rhizome of Polygonatum sibiricum Red (RPS), root of Astragalus propinquus Schischkin (RAP), bud of Hemerocallis citrina Baroni (BHC), seed of Nelumbo nucifera Gaertn (SNN) and fruit of Prunus mume (Sieb.) Sieb.etZuce (FPM). The results showed that among all exposures, the treatment with FPE resulted in the significant increase (p < 0.05) of Cd and Pb concentration in shoots and roots of S. nigrum by 32.5% and 65.2% for Cd, and 38.7% and 39.6% for Pb. The biomasses of S. nigrum in all plant extract treatments were not significantly changed (p < 0.05) compared to the control (CK). The Cd and Pb extraction rates of S. nigrum in FPE treatment were increased respectively by 60.5% and 40.5% compared to CK. Though the treatment with EDTA significantly improved (p < 0.05) the concentration of Cd and Pb of S. nigrum, the Cd and Pb masses (ug plant-1) of S. nigrum did not show any significant difference compared to the CK due to the significant decrease in the shoot (20.4%) and root (22.0%) biomasses. The chelative role of FPE might be relation with its higher polyphenolic compounds. However, not sure if the contents of polyphenolic compounds was the only differences between FPE and other additives. Thus, some unknown organic matters might also play active role. This study provided valuable information on improving the phytoremediation potential of hyperaccumulator.


Assuntos
Metais Pesados/metabolismo , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Poluentes do Solo/metabolismo , Solanum nigrum/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Quelantes/química , Quelantes/farmacologia , Extratos Vegetais/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solanum nigrum/metabolismo
13.
Sci Total Environ ; 788: 147830, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134373

RESUMO

The co-existence of antibiotics and heavy metal (HM) is common in manure. However, existing strategies for improving antibiotic dissipation or HM immobilization during composting rarely consider their combined pollution. In this study, we used agricultural lime and a newly designed attapulgite-activated carbon composite (AACC) to enhance the stabilization of HMs in a pilot-scale swine manure composting system and assessed the effectiveness of these materials for removing antibiotic residues. Results indicated that the application of either lime or AACC simultaneously enhanced HM immobilization and antibiotic degradation. In particular, the addition of AACC reduced the enrichment of Cr, Cd, Pb, and As during composting and decreased the half-lives of the antibiotics from 10.7 days to 6.3 days, which were more effectively than lime. The physicochemical and microbiological responses to different additives were subsequently studied to understand the mechanisms underlying the fates of HMs and antibiotics. High HM stress in manure inhibited antibiotic dissipation, but metal immobilization alleviated this effect. The AACC accelerated HM immobilization by surface adsorption and metal precipitation, and this enhancement strengthened during the late composting stage due to an increase in pH, whereas lime exhibited a short-term effect. Moreover, the AACC addition enhanced the contribution of bacteria to changes in antibiotic concentrations, while the increase in pile temperature could be a major factor that contributed to the acceleration of antibiotic degradation after the addition of lime. Characterization of the final compost further showed that AACC-treated compost had the lowest residual concentrations of HMs and antibiotics, higher mortality of ascarid egg, improved nitrogen conversation, and reduced phytotoxicity. Thus, co-composting of swine manure with AACC is a promising approach for producing safer compost for use in agriculture.


Assuntos
Compostagem , Metais Pesados , Animais , Antibacterianos , Poluição Ambiental , Esterco , Metais Pesados/análise , Solo , Suínos
14.
J Proteome Res ; 20(1): 110-121, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348980

RESUMO

Influenza viruses continue evolving and have the ability to cause a global pandemic, so it is very important to elucidate its pathogenesis and find new treatment methods. In recent years, proteomics has made important contributions to describing the dynamic interaction between influenza viruses and their hosts, especially in posttranslational regulation of a variety of key biological processes. Protein posttranslational modifications (PTMs) increase the diversity of functionality of the organismal proteome and affect almost all aspects of pathogen biology, primarily by regulating the structure, function, and localization of the modified proteins. Considerable technical achievements in mass spectrometry-based proteomics have been made in a large number of proteome-wide surveys of PTMs in many different organisms. Herein we specifically focus on the proteomic studies regarding a variety of PTMs that occur in both the influenza viruses, mainly influenza A viruses (IAVs), and their hosts, including phosphorylation, ubiquitination and ubiquitin-like modification, glycosylation, methylation, acetylation, and some types of acylation. Integration of these data sets provides a unique scenery of the global regulation and interplay of different PTMs during the interaction between IAVs and their hosts. Various techniques used to globally profiling these PTMs, mostly MS-based approaches, are discussed regarding their increasing roles in mechanical regulation of interaction between influenza viruses and their hosts.


Assuntos
Influenza Humana , Proteômica , Acetilação , Humanos , Espectrometria de Massas , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo
15.
J Hazard Mater ; 403: 123996, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265032

RESUMO

Microbial degradation is an important option for combating antibiotic pollution. Arthrobacter nicotianae OTC-16 was isolated as a novel tetracycline-degrading bacterium, which could degrade oxytetracycline/tetracycline (OTC/TET). Toxicity assessment indicated that this bacterium effectively converted OTC into byproducts with less toxicity to bacterial and algal indicators. Six degradation products of OTC were tentatively identified, and a potential biotransformation pathway was proposed that includes decarbonylation, reduction, and dehydration. Bioaugmentation of TC removal with this bacterium was further studied in various matrices. In aqueous media, strain OTC-16 accelerated OTC removal over a temperature range of 20-35 ℃, pH range of 6.0-9.0, and OTC concentration range of 25-150 mg L-1. The strain also facilitated the decrease of OTC and TET concentrations in both swine and chicken manures, with a maximum decrease of 91.54%, and increased the degradation of OTC in soils by 8.22-45.45%. A unique advantage of this bacterium in promoting OTC degradation in alkaline environments was demonstrated, where it successfully competed with the indigenous microbiota and largely decreased the relative abundances of the studied tetracycline resistance genes (tetB and tetW) in soil. This work offers a better understanding of the antibiotic bioaugmentation and new microbial sources.


Assuntos
Oxitetraciclina , Animais , Antibacterianos , Esterco , Micrococcaceae , Suínos , Tetraciclina
16.
Int Immunopharmacol ; 90: 107137, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33199235

RESUMO

Excessive activity of osteoclasts causes many bone-related diseases, such as rheumatoid arthritis and osteoporosis. Agrimophol (AGR), a phenolic compound, originated from Agrimonia pilosa Ledeb. In prior studies, AGR is reported to possess schistosomicidal and mycobactericidal activities. However, no reports covered its anti-osteoclastogenesis characteristic. In this study, we found that AGR inhibited RANKL-induced osteoclastogenesis, bone-resorption, F-actin ring formation, and the mRNA expression of osteoclast-associated genes such as CTSK, TRAP, MMP-9, and ATP6v0d2 in vitro. In addition, AGR suppressed RANKL-induced expression of c-Fos and NFATc1. However, AGR treatment did not affect NF-κB activation and MAPKs phosphorylation in RANKL-stimulated BMMs, which implicated that AGR might not influence the initial expression of NFATc1 mediated by NF-κB and MAPKs signaling. Our results further indicated that AGR did not alter phosphorylation levels of GSK3ß and the expression of calcineurin, which implicated that AGR treatment might not interfere with phosphorylation and de-phosphorylation of NFATc1 mediated by GSK3ß and calcineurin, respectively. B-lymphocyte-induced maturation protein-1 (Blimp1), which was regarded as a transcriptional repressor of negative regulators of osteoclastogenesis, was markedly attenuated in the presence of AGR, leading to the enhanced expression of B-cell lymphoma 6 (Bcl-6). Meanwhile, Blimp1 knockdown in BMMs by siRNA strongly enhanced the expression of Bcl6 and reduced NFATc1 induction by RANKL. These findings suggested that AGR inhibited RANKL-induced osteoclast differentiation through Blimp1-Bcl-6 signaling mediated modulation of NFATc1 and its target genes. Consistent with these in vitro results, AGR exhibited a protective influence in an in vivo mouse model of LPS-induced bone loss by suppressing excessive osteoclast activity and attenuating LPS-induced bone destruction. Hence, these results identified that AGR could be considered as a potential therapeutic agent against bone lysis disease.


Assuntos
Reabsorção Óssea/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fenóis/farmacologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Ligante RANK/farmacologia , Actinas/metabolismo , Animais , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Células Cultivadas , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Transdução de Sinais
17.
Waste Manag ; 113: 1-11, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32502764

RESUMO

Composting is a sustainable means of managing organic waste, and solar composters offer a viable solution in rural areas lacking connection to municipal power supplies. This study tracked the physicochemical and microbiological changes that occur in a solar composting greenhouse during the treatment of food and green cellulosic waste in fed-batch mode, which remain poorly understood. Solar composting greenhouse performed well on waste reduction and nutrient retention, resulting in a 45.0-58.8% decrease in feedstock volume over 12-day composting cycles, a 41% removal in dry matter after three batches of composting, and 29.5%, 252.9% and 96.6% increase in the nitrogen, phosphorus and potassium content respectively after 42 days of composting. Batch feeding and composting jointly influenced microbiological succession by altering the physicochemical properties of compost. The contents of nitrogen and phosphorus, pH, and electrical conductivity significantly accounts for variations in culturable microbial populations. The succession of dominant bacterial genera such as Lactobacillus, Pseudoxanthomonas, Bacillus, and Pseudomonas were closely related to pH, cellulose, NH4+-N, carbon content, and temperature. In addition, Pichia kudriavzevii, Thermomyces lanuginosus, and Scopulariopsis brevicaulis successively became the dominant fungal species during composting. Preliminary compost quality assessments showed that solar composting greenhouse has a high potentiality to transform organic waste into organic fertilizer. Additionally, corresponding purposeful suggestions were proposed for future optimization in this system, mainly from a microbiological aspect.


Assuntos
Compostagem , Fertilizantes , Nitrogênio/análise , Fósforo , Solo
18.
Anal Chem ; 92(12): 8292-8297, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32434323

RESUMO

Copper-catalyzed azide-alkyne cycloaddition (CuAAC) has been widely used in a variety of scientific research, including dynamic proteomics. The current well-established protocols of CuAAC for proteomics analysis introduce labeling tags (azide- or alkyne-containing reagents) at the protein level, followed by downstream analysis by mass spectrometry. In the present study, a new method for proteomic profiling of nascent proteins relying on highly efficient peptide-based click chemistry is proposed, in which the CuAAC reaction was performed at the peptide level, leading to a significant increase in efficiency of the click conjugation reaction. A remarkable improvement in identification rate for spectrum, distinct peptide, and protein was achieved when proteins to be analyzed were proteolytically cleaved into peptides prior to the click conjugation reaction, which would be beneficial to downstream proteomics analysis, especially for the detection of AHA-tagged proteins in very low amounts.


Assuntos
Peptídeos/química , Proteínas/análise , Proteômica , Alcinos/química , Azidas/química , Catálise , Química Click , Cobre/química , Reação de Cicloadição , Células HEK293 , Humanos
19.
Environ Pollut ; 263(Pt A): 114439, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32302890

RESUMO

Manure pH may vary depending on its inherent composition or additive contents. However, the effect of pH on the fate of antibiotics and antibiotic resistance determinants in manure remains unclear. This work demonstrated that pH adjustment promoted the removal of different sulfonamide antibiotics (SAs) within swine manure under incubation conditions, which increased from 26-60.8% to 75.0-86.0% by adjusting the initial pH from neutral (7.4) to acidic (5.4-4.8). Acidification was also demonstrated to inhibit the accumulation of antibiotic resistance genes in manure during incubation. Acidified manure contained both lower absolute and relative abundances of sul1 and sul2 than those at a neutral pH like 7.4. Further investigation indicated that acidification promoted the reduction of sul genes in manure by restricting sulfonamide-resistant bacteria (SRB) proliferation and inhibiting IntI1 accumulation. Furthermore, pH adjustment significantly influenced the composition of the manure bacterial community after incubation, which increased Firmicutes and decreased Proteobacteria. Close relationships were observed between pH-induced enrichment of the Firmicutes bacterial phylum, enhanced SAs degradation, and the fates of antibiotic resistance determinants. Overall, lowering the pH of manure promotes the degradation of SAs, decreases sul genes and SRB, and inhibits horizontal sul gene transfer, which could be a simple yet highly-effective manure management option to reduce antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Esterco , Animais , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Genes Bacterianos/efeitos dos fármacos , Microbiologia do Solo , Sulfanilamida , Sulfonamidas , Suínos
20.
Food Funct ; 10(10): 6655-6665, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31556890

RESUMO

Maqui berry (Aristotelia chilensis) is an edible berry. The study aimed to explore the therapeutic effect of maqui berry on inflammatory bowel disease. Maqui berry water extract was separated by multiple solvents extraction. The chemical bases, antioxidant and anti-inflammatory properties of different extract fractions were then compared. Dextran sodium sulfate (DSS)-induced ulcerative colitis mice were used for the pharmacological activity test in vivo. Experimental results showed that the ethyl acetate fraction of maqui berry water extract (MWE) was rich in phenols and exhibited good antioxidant and anti-inflammatory activities. MWE considerably reduced the expression of COX2 and IL-6 in LPS-stimulated RAW 264.7 cells. Inflammatory bowel disease index, MDA, NO, i-NOS, and COX2 in colon tissues and MPO, TNF-α, and IL-1ß in blood serums were remarkably decreased in the treatment group compared to in the model group (p < 0.05). Intestinal histopathological damage was significantly alleviated in the treatment group, and the expression of occludin was increased (p < 0.05). MWE treatment alleviated the imbalance of gut microbiota caused by DSS injury. Overall, MWE plays a therapeutic role in ulcerative colitis through its anti-inflammatory effect, reduces immune stress, and regulates gut microbiota.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Elaeocarpaceae/química , Extratos Vegetais/administração & dosagem , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Colo/imunologia , Colo/microbiologia , Sulfato de Dextrana/efeitos adversos , Frutas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/imunologia , Extratos Vegetais/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...