Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cells ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786101

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized, at least in part, by autoimmunity through amplified T helper 1 and 17 (Th1 and Th17) immune responses. The loss of immune tolerance controlled by programmed death-ligand 1 (PD-L1) may contribute to this. OBJECTIVES: We studied the tolerogenic role of PD-L1+ dendritic cells (DCs) and their subtypes in relation to specific T cell immunity and the clinical phenotypes of COPD. METHODS: We used flow cytometry to analyze PD-L1 expression by the DCs and their subtypes in the peripheral blood mononuclear cells (PBMCs) from normal participants and those with COPD. T cell proliferation and the signature cytokines of T cell subtypes stimulated with elastin as autoantigens were measured using flow cytometry and enzyme-linked immunosorbent assays (ELISA), respectively. MEASUREMENT AND MAIN RESULTS: A total of 83 participants were enrolled (normal, n = 29; COPD, n = 54). A reduced PD-L1+ conventional dendritic cell 1 (cDC1) ratio in the PBMCs of the patients with COPD was shown (13.7 ± 13.7%, p = 0.03). The decrease in the PD-L1+ cDC1 ratio was associated with a rapid decline in COPD (p = 0.02) and correlated with the CD4+ T cells (r = -0.33, p = 0.02). This is supported by the NCBI GEO database accession number GSE56766, the researchers of which found that the gene expressions of PD-L1 and CD4, but not CD8 were negatively correlated from PBMC in COPD patients (r = -0.43, p = 0.002). Functionally, the PD-L1 blockade enhanced CD4+ T cell proliferation stimulated by CD3/elastin (31.2 ± 22.3%, p = 0.04) and interleukin (IL)-17A production stimulated by both CD3 (156.3 ± 54.7, p = 0.03) and CD3/elastin (148 ± 64.9, p = 0.03) from the normal PBMCs. The PD-L1 blockade failed to increase IL-17A production in the cDC1-depleted PBMCs. By contrast, there was no significant change in interferon (IFN)-γ, IL-4, or IL-10 after the PD-L1 blockade. Again, these findings were supported by the NCBI GEO database accession number GSE56766, the researchers of which found that only the expression of RORC, a master transcription factor driving the Th17 cells, was significantly negatively correlated to PD-L1 (r = -0.33, p = 0.02). CONCLUSIONS: Circulating PD-L1+ cDC1 was reduced in the patients with COPD, and the tolerogenic role was suppressed with susceptibility to self-antigens and linked to rapid decline caused by Th17-skewed chronic inflammation.


Assuntos
Antígeno B7-H1 , Células Dendríticas , Tolerância Imunológica , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Antígeno B7-H1/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Citocinas/metabolismo
2.
Alzheimers Dement ; 19(12): 5482-5497, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37218673

RESUMO

INTRODUCTION: Hyperphosphorylation and aggregation of the microtubule-associated protein tau cause the development of tauopathies, such as Alzheimer's disease and frontotemporal dementia (FTD). We recently uncovered a causal link between constitutive serotonin receptor 7 (5-HT7R) activity and pathological tau aggregation. Here, we evaluated 5-HT7R inverse agonists as novel drugs in the treatment of tauopathies. METHODS: Based on structural homology, we screened multiple approved drugs for their inverse agonism toward 5-HT7R. Therapeutic potential was validated using biochemical, pharmacological, microscopic, and behavioral approaches in different cellular models including tau aggregation cell line HEK293 tau bimolecular fluorescence complementation, primary mouse neurons, and human induced pluripotent stem cell-derived neurons carrying an FTD-associated tau mutation as well as in two mouse models of tauopathy. RESULTS: Antipsychotic drug amisulpride is a potent 5-HT7R inverse agonist. Amisulpride ameliorated tau hyperphosphorylation and aggregation in vitro. It further reduced tau pathology and abrogated memory impairment in mice. DISCUSSION: Amisulpride may be a disease-modifying drug for tauopathies.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Tauopatias , Humanos , Camundongos , Animais , Agonismo Inverso de Drogas , Amissulprida/uso terapêutico , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/genética , Células HEK293 , Células-Tronco Pluripotentes Induzidas/metabolismo , Tauopatias/genética , Proteínas tau/metabolismo , Doença de Alzheimer/patologia
3.
Neurobiol Dis ; 180: 106079, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36918046

RESUMO

Dysregulated cortical expression of the neural cell adhesion molecule (NCAM) and deficits of its associated polysialic acid (polySia) have been found in Alzheimer's disease and schizophrenia. However, the functional role of polySia in cortical synaptic plasticity remains poorly understood. Here, we show that acute enzymatic removal of polySia in medial prefrontal cortex (mPFC) slices leads to increased transmission mediated by the GluN1/GluN2B subtype of N-methyl-d-aspartate receptors (NMDARs), increased NMDAR-mediated extrasynaptic tonic currents, and impaired long-term potentiation (LTP). The latter could be fully rescued by pharmacological suppression of GluN1/GluN2B receptors, or by application of short soluble polySia fragments that inhibited opening of GluN1/GluN2B channels. These treatments and augmentation of synaptic NMDARs with the glycine transporter type 1 (GlyT1) inhibitor sarcosine also restored LTP in mice deficient in polysialyltransferase ST8SIA4. Furthermore, the impaired performance of polySia-deficient mice and two models of Alzheimer's disease in the mPFC-dependent cognitive tasks could be rescued by intranasal administration of polySia fragments. Our data demonstrate the essential role of polySia-NCAM in the balancing of signaling through synaptic/extrasynaptic NMDARs in mPFC and highlight the therapeutic potential of short polySia fragments to restrain GluN1/GluN2B-mediated signaling.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Ácidos Siálicos/metabolismo , Cognição , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptores de N-Metil-D-Aspartato
4.
Brain Behav Immun ; 110: 245-259, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906076

RESUMO

Remodeling of synapses by microglia is essential for synaptic plasticity in the brain. However, during neuroinflammation and neurodegenerative diseases, microglia can induce excessive synaptic loss, although the precise underlying mechanisms are unknown. To directly observe microglia-synapse interactions under inflammatory conditions, we performed in vivo two-photon time-lapse imaging of microglia-synapse interactions after bacterial lipopolysaccharide administration to model systemic inflammation, or after inoculation of Alzheimer's disease (AD) brain extracts to model disease-associated neuroinflammatory microglial response. Both treatments prolonged microglia-neuron contacts, decreased basal surveillance of synapses and promoted synaptic remodeling in response to synaptic stress induced by focal single-synapse photodamage. Spine elimination correlated with the expression of microglial complement system/phagocytic proteins and the occurrence of synaptic filopodia. Microglia were observed contacting spines, then stretching and phagocytosing spine head filopodia. Thus, in response to inflammatory stimuli microglia exacerbated spine remodeling through prolonged microglial contact and elimination of spines 'tagged' by synaptic filopodia.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Microglia/metabolismo , Tauopatias/metabolismo , Doença de Alzheimer/metabolismo , Sinapses/metabolismo , Inflamação/metabolismo
6.
Front Oncol ; 12: 963896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439487

RESUMO

Background: The interactions between tumor cells and the host immune system play a crucial role in lung cancer progression and resistance to treatment. The alterations of EGFR signaling have the potential to produce an ineffective tumor-associated immune microenvironment by upregulating a series of immune suppressors, including inhibitory immune checkpoints, immunosuppressive cells, and cytokines. Elevated Heparin-binding EGF-like growth factor (HB-EGF) expression, one EGFR ligand correlated with higher histology grading, worse patient prognosis, and lower overall survival rate, acts as a chemotactic factor. However, the role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in the accumulation of immune cells in the tumor microenvironment remains unclear. Methods: The clinical association of HB-EGF expression in lung cancer was examined using the Gene Expression Omnibus (GEO) repository. HB-EGF expression in different cell types was determined using single-cell RNA sequencing (scRNA-seq) dataset. The correlation between HB-EGF expression and cancer-immune infiltrated cells was investigated by performing TIMER and ClueGo pathways analysis from TCGA database. The chemotaxis of HB-EGF and macrophage infiltration was investigated using migration and immunohistochemical staining. Results: The high HB-EGF expression was significantly correlated with poor overall survival in patients with lung adenocarcinoma (LUAD) but not lung squamous cell carcinoma (LUSC). Moreover, HB-EGF expression was correlated with the infiltration of monocytes, macrophages, neutrophils, and dendritic cells in LUAD but not in LUSC. Analysis of scRNA-seq data revealed high HB-EGF expression in lung cancer cells and myeloid cells. Results from the pathway analysis and cell-based experiment indicated that elevated HB-EGF expression was associated with the presence of macrophage and lung cancer cell migration. HB-EGF was highly expressed in tumors and correlated with M2 macrophage infiltration in LUAD. Conclusions: HB-EGF is a potential prognostic marker and therapeutic target for lung cancer progression, particularly in LUAD.

7.
PLoS One ; 17(9): e0275182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170295

RESUMO

Dysregulation of dopaminergic transmission induced by the HIV-1 transactivator of transcription (Tat) has been implicated as a central factor in the development of HIV-1 associated neurocognitive disorders (HAND). We have demonstrated that the tyrosine470 residue of the human dopamine transporter (hDAT) plays a critical role in Tat-hDAT interaction. Based on the computational modeling predictions, the present study sought to examine the mutational effects of the tyrosine467 residue of the human norepinephrine transporter (hNET), a corresponding residue of the hDAT tyrosine470, on Tat-induced inhibition of reuptake of dopamine through the hNET. Mutations of the hNET tyrosine467 to a histidine (Y467H) or a phenylalanine (Y467F) displayed similar kinetic properties of reuptake of [3H]dopamine and [3H]norepinephrine in PC12 cells expressing wild-type hNET and its mutants. Compared to wild-type hNET, neither of Y467H or Y467F altered Bmax and Kd values of [3H]WIN35,428 binding, whereas Y467H but not Y467F decreased the Bmax of [3H]nisoxetine binding without changes in Kd. Y467H also increased the affinity of nisoxetine for inhibiting [3H]dopamine uptake relative to wild-type hNET. Recombinant Tat1-86 (140 nM) induced a significant reduction of [3H]dopamine uptake in wild-type hNET, which was attenuated in both Y467H and Y467F. Compared to wild-type hNET, neither Y467H or Y467F altered [3H]dopamine efflux in CHO cells expressing WT hNET and mutants, whereas Y467F but not Y467H decreased [3H]MPP+ efflux. These results demonstrate tyrosine467 as a functional recognition residue in the hNET for Tat-induced inhibition of dopamine transport and provide a novel insight into the molecular basis for developing selective compounds that target Tat-NET interactions in the context of HAND.


Assuntos
HIV-1 , Simportadores , Animais , Cricetinae , Cricetulus , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fluoxetina/análogos & derivados , HIV-1/genética , HIV-1/metabolismo , Histidina/metabolismo , Humanos , Mutação , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Fenilalanina/metabolismo , Ratos , Simportadores/metabolismo , Transativadores/genética , Tirosina/metabolismo
8.
Biomedicines ; 10(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35453536

RESUMO

Despite rapidly evolving pathobiological mechanistic demystification, coupled with advances in diagnostic and therapeutic modalities, chronic obstructive pulmonary disease (COPD) remains a major healthcare and clinical challenge, globally. Further compounded by the dearth of available curative anti-COPD therapy, it is posited that this challenge may not be dissociated from the current lack of actionable COPD pathognomonic molecular biomarkers. There is accruing evidence of the involvement of protracted 'smoldering' inflammation, repeated lung injury, and accelerated lung aging in enhanced predisposition to or progression of COPD. The relatively novel uncharacterized human long noncoding RNA lnc-IL7R (otherwise called LOC100506406) is increasingly designated a negative modulator of inflammation and regulator of cellular stress responses; however, its role in pulmonary physiology and COPD pathogenesis remains largely unclear and underexplored. Our previous work suggested that upregulated lnc-IL7R expression attenuates inflammation following the activation of the toll-like receptor (TLR)-dependent innate immune system, and that the upregulated lnc-IL7R is anti-correlated with concomitant high PM2.5, PM10, and SO2 levels, which is pathognomonic for exacerbated/aggravated COPD in Taiwan. In the present study, our quantitative analysis of lnc-IL7R expression in our COPD cohort (n = 125) showed that the lnc-IL7R level was significantly correlated with physiological pulmonary function and exhibited COPD-based stratification implications (area under the curve, AUC = 0.86, p < 0.001). We found that the lnc-IL7R level correctly identified patients with COPD (sensitivity = 0.83, specificity = 0.83), precisely discriminated those without emphysematous phenotype (sensitivity = 0.48, specificity = 0.89), and its differential expression reflected disease course based on its correlation with the COPD GOLD stage (r = −0.59, p < 0.001), %LAA-950insp (r = −0.30, p = 0.002), total LAA (r = −0.35, p < 0.001), FEV1(%) (r = 0.52, p < 0.001), FVC (%) (r = 0.45, p < 0.001), and post-bronchodilator FEV1/FVC (r = 0.41, p < 0.001). Consistent with other data, our bioinformatics-aided dose−response plot showed that the probability of COPD decreased as lnc-IL7R expression increased, thus, corroborating our posited anti-COPD therapeutic potential of lnc-IL7R. In conclusion, reduced lnc-IL7R expression not only is associated with inflammation in the airway epithelial cells but is indicative of impaired pulmonary function, pathognomonic of COPD, and predictive of an exacerbated/ aggravated COPD phenotype. These data provide new mechanistic insights into the ailing lung and COPD progression, as well as suggest a novel actionable molecular factor that may be exploited as an efficacious therapeutic strategy in patients with COPD.

9.
Respir Res ; 23(1): 77, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361214

RESUMO

BACKGROUND: There is a link between exposure to air pollution and the increased prevalence of chronic obstructive pulmonary disease (COPD) and declining pulmonary function, but the association with O2 desaturation during exercise in COPD patients with emphysema is unclear. Our aims were to estimate the prevalence of O2 desaturation during exercise in patients with COPD, and determine the association of exposure to air pollution with exercise-induced desaturation (EID), the degree of emphysema, and dynamic hyperinflation (DH). METHODS: We assessed the effects of 10-year prior to the HRCT assessment and 7 days prior to the six-minute walking test exposure to particulate matter with an aerodynamic diameter of < 10 µm (PM10) or of < 2.5 µM (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in patients with emphysema in this retrospective cohort study. EID was defined as a nadir standard pulse oximetry (SpO2) level of < 90% or a delta (△)SpO2 level of ≥ 4%. Ambient air pollutant (PM2.5, PM10, O3, and NO2) data were obtained from Taiwan Environmental Protection Administration (EPA) air-monitoring stations, usually within 10 km to each participant's home address. RESULTS: We recruited 141 subjects with emphysema. 41.1% of patients with emphysema exhibited EID, and patients with EID had more dyspnea, worse lung function, more severe emphysema, more frequent acute exacerbations, managed a shorter walking distance, had DH, and greater long-term exposure to air pollution than those without EID. We observed that levels of 10-year concentrations of PM10, PM2.5, and NO2 were significantly associated with EID, PM10 and PM2.5 were associated with the severity of emphysema, and associated with DH in patients with emphysema. In contrast, short-term exposure did not have any effect on patients. CONCLUSION: Long-term exposure to ambient PM10, PM2.5 and NO2, but not O3, was associated with EID.


Assuntos
Poluição do Ar , Ozônio , Doença Pulmonar Obstrutiva Crônica , Poluição do Ar/efeitos adversos , Exercício Físico , Humanos , Ozônio/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Estudos Retrospectivos
10.
Cell Biol Toxicol ; 38(6): 1097-1120, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35303175

RESUMO

BACKGROUND: Long-term exposure to PM2.5 (particulate matter with an aerodynamic diameter of ≤ 2.5 µm) is associated with pulmonary injury and emphysema in patients with chronic obstructive pulmonary disease (COPD). We investigated mechanisms through which the long noncoding RNA lnc-IL7R contributes to cellular damage by inducing oxidative stress in COPD patients exposed to PM2.5. METHODS: Associations of serum lnc-IL7R levels with lung function, emphysema, and previous PM2.5 exposure in COPD patients were analyzed. Reactive oxygen species and lnc-IL7R levels were measured in PM2.5-treated cells. The levels of lnc-IL7R and cellular senescence-associated genes, namely p16INK4a and p21CIP1/WAF1, were determined through lung tissue section staining. The effects of p16INK4a or p21CIP1/WAF1 regulation were examined by performing lnc-IL7R overexpression and knockdown assays. The functions of lnc-IL7R-mediated cell proliferation, cell cycle, senescence, colony formation, and apoptosis were examined in cells treated with PM2.5. Chromatin immunoprecipitation assays were conducted to investigate the epigenetic regulation of p21CIP1/WAF1. RESULTS: Lnc-IL7R levels decreased in COPD patients and were negatively correlated with emphysema or PM2.5 exposure. Lnc-IL7R levels were upregulated in normal lung epithelial cells but not in COPD cells exposed to PM2.5. Lower lnc-IL7R expression in PM2.5-treated cells induced p16INK4a and p21CIP1/WAF1 expression by increasing oxidative stress. Higher lnc-IL7R expression protected against cellular senescence and apoptosis, whereas lower lnc-IL7R expression augmented injury in PM2.5-treated cells. Lnc-IL7R and the enhancer of zeste homolog 2 (EZH2) synergistically suppressed p21CIP1/WAF1 expression through epigenetic modulation. CONCLUSION: Lnc-IL7R attenuates PM2.5-mediated p21CIP1/WAF1 expression through EZH2 recruitment, and its dysfunction may augment cellular injury in COPD.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Humanos , Apoptose/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Enfisema/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Subunidade alfa de Receptor de Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Material Particulado/toxicidade , Doença Pulmonar Obstrutiva Crônica/genética , RNA Longo não Codificante/genética
11.
Nanotechnology ; 33(16)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35021157

RESUMO

Phage is a promising therapeutic agent for treating antibiotic resistant bacteria. However, in the process of treatment, phage may be cleared by the immune system and cleaved by protease, which could affect the efficacy of phage. In order to solve the above problems, phage encapsulation is usually adopted. In this study, we employed metal phenolic network (MPN) for efficient phage encapsulation which could protect phage from the cleavage of protease, and keep cytotoxicity weak. In the model of skin wound infection, the encapsulated phage could be released in response to pH change to achieve good antibacterial effect. Furthermore, the MPN encapsulation could prolong the T4 phage residence time at the wound. Our findings suggest that MPN can be a promising material for phage encapsulation.


Assuntos
Bacteriófago T4/fisiologia , Estruturas Metalorgânicas/química , Fenóis/química , Animais , Infecções Bacterianas/patologia , Infecções Bacterianas/terapia , Bacteriófago T4/química , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Compostos Férricos/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Pele/patologia , Taninos/química
12.
Cell Biol Toxicol ; 38(5): 865-887, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34036453

RESUMO

Exposure to environmental and occupational contaminants leads to lung cancer. 3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA) is a potential carcinogen in ambient air or diesel particulate matter. Studies have revealed that short-term exposure to 3-NBA induces cell death, reactive oxygen species activation, and DNA adduct formation and damage. However, details of the mechanism by which chronic exposure to 3-NBA influences lung carcinogenesis remain largely unknown. In this study, human lung epithelial BEAS-2B cells were continuously exposed to 0-10-µM 3-NBA for 6 months. NanoString analysis was conducted to evaluate gene expression in the cells, revealing that 3-NBA-mediated transformation results in a distinct gene expression signature including carbon cancer metabolism, metastasis, and angiogenesis. Alterations in tumor-promoting genes such as EREG (epiregulin), SOX9, E-cadherin, TWIST, and IL-6 were involved in epithelial cell aggressiveness. Kaplan-Meier plotter analyses indicated that increased EREG and IL-6 expressions in early-stage lung cancer cells are correlated with poor survival. In vivo xenografts on 3-NBA-transformed cells exhibited prominent tumor formation and metastasis. EREG knockout cells exposed to 3-NBA for a short period exhibited high apoptosis and low colony formation. By contrast, overexpression of EREG in 3-NBA-transformed cells markedly activated the PI3K/AKT and MEK/ERK signaling pathways, resulting in tumorigenicity. Furthermore, elevated IL-6 and EREG expressions synergistically led to STAT3 signaling activation, resulting in clonogenic cell survival and migration. Taken together, chronic exposure of human lung epithelial cells to 3-NBA leads to malignant transformation, in which the EREG signaling pathway plays a pivotal mediating role. • Short-term exposure of lung epithelial cells to 3-NBA can lead to ROS production and cell apoptosis. • Long-term chronic exposure to 3-NBA upregulates the levels of tumor-promoting genes such as EREG and IL-6. • Increased EREG expression in 3-NBA-transformed cells markedly contributes to tumorigenesis through PI3K/AKT and MEK/ERK activation and synergistically enhances the IL-6/STAT3 signaling pathway, which promotes tumorigenicity.


Assuntos
Adutos de DNA , Neoplasias Pulmonares , Benzo(a)Antracenos , Caderinas/metabolismo , Carbono/metabolismo , Carbono/farmacologia , Carcinogênese/metabolismo , Carcinógenos , Transformação Celular Neoplásica/metabolismo , Adutos de DNA/metabolismo , Adutos de DNA/farmacologia , Epirregulina/genética , Epirregulina/metabolismo , Epirregulina/farmacologia , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Material Particulado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
13.
Front Med (Lausanne) ; 9: 1047420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687440

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) has high global health concerns, and previous research proposed various indicators to predict mortality, such as the distance-saturation product (DSP), derived from the 6-min walk test (6MWT), and the low-attenuation area percentage (LAA%) in pulmonary computed tomographic images. However, the feasibility of using these indicators to evaluate the stability of COPD still remains to be investigated. Associations of the DSP and LAA% with other COPD-related clinical parameters are also unknown. This study, thus, aimed to explore these associations. Methods: This retrospective study enrolled 111 patients with COPD from northern Taiwan. Individuals' data we collected included results of a pulmonary function test (PFT), 6MWT, life quality survey [i.e., the modified Medical Research Council (mMRC) scale and COPD assessment test (CAT)], history of acute exacerbation of COPD (AECOPD), and LAA%. Next, the DSP was derived by the distance walked and the lowest oxygen saturation recorded during the 6MWT. In addition, the DSP and clinical phenotype grouping based on clinically significant outcomes by previous study approaches were employed for further investigation (i.e., DSP of 290 m%, LAA% of 20%, and AECOPD frequency of ≥1). Mean comparisons and linear and logistic regression models were utilized to explore associations among the assessed variables. Results: The low-DSP group (<290 m%) had significantly higher values for the mMRC, CAT, AECOPD frequency, and LAA% at different lung volume scales (total, right, and left), whereas it had lower values of the PFT and 6MWT parameters compared to the high-DSP group. Significant associations (with high odds ratios) were observed of the mMRC, CAT, AECOPD frequency, and PFT with low- and high-DSP groupings. Next, the risk of having AECOPD was associated with the mMRC, CAT, DSP, and LAA% (for the total, right, and left lungs). Conclusion: A lower value of the DSP was related to a greater worsening of symptoms, more-frequent exacerbations, poorer pulmonary function, and more-severe emphysema (higher LAA%). These readily determined parameters, including the DSP and LAA%, can serve as indicators for assessing the COPD clinical course and may can serve as a guide to corresponding treatments.

14.
Biomedicines ; 9(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34944649

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) continues to pose a therapeutic challenge. This may be connected with its nosological heterogeneity, broad symptomatology spectrum, varying disease course, and therapy response. The last three decades has been characterized by increased understanding of the pathobiology of COPD, with associated advances in diagnostic and therapeutic modalities; however, the identification of pathognomonic biomarkers that determine disease severity, affect disease course, predict clinical outcome, and inform therapeutic strategy remains a work in progress. OBJECTIVES: Hypothesizing that a multi-variable model rather than single variable model may be more pathognomonic of COPD emphysema (COPD-E), the present study explored for disease-associated determinants of disease severity, and treatment success in Taiwanese patients with COPD-E. METHODS: The present single-center, prospective, non-randomized study enrolled 125 patients with COPD and 43 healthy subjects between March 2015 and February 2021. Adopting a multimodal approach, including bioinformatics-aided analyses and geospatial modeling, we performed an integrated analysis of selected epigenetic, clinicopathological, geospatial, and air pollutant variables, coupled with correlative analyses of time-phased changes in pulmonary function indices and COPD-E severity. RESULTS: Our COPD cohort consisted of 10 non-, 57 current-, and 58 ex-smokers (median age = 69 ± 7.76 years). Based on the percentages of low attenuation area below - 950 Hounsfield units (%LAA-950insp), 36 had mild or no emphysema (%LAA-950insp < 6), 22 were moderate emphysema cases (6 ≤ %LAA-950insp < 14), and 9 presented with severe emphysema (%LAA-950insp ≥ 14). We found that BMI, lnc-IL7R, PM2.5, PM10, and SO2 were differentially associated with disease severity, and are highly-specific predictors of COPD progression. Per geospatial levels, areas with high BMI and lnc-IL7R but low PM2.5, PM10, and SO2 were associated with fewer and ameliorated COPD cases, while high PM2.5, PM10, and SO2 but low BMI and lnc-IL7R characterized places with more COPD cases and indicated exacerbation. The prediction pentad effectively differentiates patients with mild/no COPD from moderate/severe COPD cases, (mean AUC = 0.714) and exhibited very high stratification precision (mean AUC = 0.939). CONCLUSION: Combined BMI, lnc-IL7R, PM2.5, PM10, and SO2 levels are optimal classifiers for accurate patient stratification and management triage for COPD in Taiwan. Low BMI, and lnc-IL7R, with concomitant high PM2.5, PM10, and SO2 levels is pathognomonic of exacerbated/aggravated COPD in Taiwan.

15.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884633

RESUMO

Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.


Assuntos
Neoplasias do Colo/metabolismo , Epirregulina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Epirregulina/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Terapia de Alvo Molecular , Mutação , Transdução de Sinais , Microambiente Tumoral
16.
Nat Commun ; 12(1): 6045, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663792

RESUMO

The retrosplenial cortex (RSC) has diverse functional inputs and is engaged by various sensory, spatial, and associative learning tasks. We examine how multiple functional aspects are integrated on the single-cell level in the RSC and how the encoding of task-related parameters changes across learning. Using a visuospatial context discrimination paradigm and two-photon calcium imaging in behaving mice, a large proportion of dysgranular RSC neurons was found to encode multiple task-related dimensions while forming context-value associations across learning. During reversal learning requiring increased cognitive flexibility, we revealed an increased proportion of multidimensional encoding neurons that showed higher decoding accuracy for behaviorally relevant context-value associations. Chemogenetic inactivation of RSC led to decreased behavioral context discrimination during learning phases in which context-value associations were formed, while recall of previously formed associations remained intact. RSC inactivation resulted in a persistent positive behavioral bias in valuing contexts, indicating a role for the RSC in context-value updating.


Assuntos
Condicionamento Clássico/fisiologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Masculino , Rememoração Mental , Camundongos , Camundongos Endogâmicos C57BL
17.
J Neuroimmune Pharmacol ; 16(4): 854-869, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33537927

RESUMO

HIV-1 transactivator of transcription (Tat) has a great impact on the development of HIV-1 associated neurocognitive disorders through disrupting dopamine transmission. This study determined the mutational effects of human dopamine transporter (hDAT) on basal and Tat-induced inhibition of dopamine transport. Compared to wild-type hDAT, the maximal velocity (Vmax) of [3H]dopamine uptake was decreased in D381L and Y88F/D206L/H547A, increased in D206L/H547A, and unaltered in D206L. Recombinant TatR1 - 86 inhibited dopamine uptake in wild-type hDAT, which was attenuated in either DAT mutants (D206L, D206L/H547A, and Y88F/D206L/H547A) or mutated TatR1 - 86 (K19A and C22G), demonstrating perturbed Tat-DAT interaction. Mutational effects of hDAT on the transporter conformation were evidenced by attenuation of zinc-induced increased [3H]WIN35,428 binding in D206L/H547A and Y88F/D206A/H547A and enhanced basal MPP+ efflux in D206L/H547A. H547A-induced outward-open transport conformational state was further validated by enhanced accessibility to MTSET ([2-(trimethylammonium)ethyl]-methanethiosulfonate) of an inserted cysteine (I159C) on a hDAT background.. Furthermore, H547A displayed an increase in palmitoylation inhibitor-induced inhibition of dopamine uptake relative to wide-type hDAT, indicating a change in basal palmitoylation in H547A. These results demonstrate that Y88F, D206L, and H547A attenuate Tat inhibition while preserving DA uptake, providing insights into identifying targets for improving DAT-mediated dopaminergic dysregulation. HIV-1 Tat inhibits dopamine uptake through human dopamine transporter (hDAT) on the presynaptic terminal through a direct allosteric interaction. Key hDAT residues D-H547, D-Y88, and D-D206 are predicted to be involved in the HIV-1 Tat-DAT binding. Mutating these residues attenuates this inhibitory effect by disrupting the Tat-hDAT interaction.


Assuntos
HIV-1 , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , HIV-1/metabolismo , Humanos , Mutação , Transativadores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
18.
Glia ; 69(1): 182-200, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32865286

RESUMO

In the advanced stages of Alzheimer's disease (AD), microglia are transformed to an activated phenotype with thickened and retracted processes, migrate to the site of amyloid-beta (Aß) plaques, and proliferate. In the early stages of AD, it is still poorly understood whether the microglial function is altered and which factors may regulate these changes. Here, we focused on studying microglia in the retrosplenial cortex (RSC) in 3- to 4-month-old 5xFAD mice as a transgenic mouse model of AD. At this age, there are neither Aß plaques, nor activation of microglia, nor dysregulation in the expression of genes encoding major extracellular matrix (ECM) molecules or extracellular proteases in the RSC. Still, histochemical evaluation of the fine structure of neural ECM revealed increased levels of Wisteria floribunda agglutinin labeling in holes of perineuronal nets and changes in the perimeter of ECM barriers around the holes in 5xFAD mice. Two-photon vital microscopy demonstrated normal morphology and resting motility of microglia but strongly diminished number of microglial cells that migrated to the photolesion site in 5xFAD mice. Enzymatic digestion of ECM by chondroitinase ABC (ChABC) ameliorated this defect. Accordingly, the characterization of cell surface markers by flow cytometry demonstrated altered expression of microglial CD45. Moreover, ChABC treatment reduced the invasion of myeloid-derived mononuclear cells into the RSC of 5xFAD mice. Hence, the migration of both microglia and myeloid cells is altered during the early stages of amyloidosis and can be restored at least partially by the attenuation of the ECM.


Assuntos
Amiloidose , Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Matriz Extracelular , Camundongos , Camundongos Transgênicos , Microglia , Placa Amiloide
19.
Sensors (Basel) ; 19(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683704

RESUMO

High dynamic range (HDR) has wide applications involving intelligent vision sensing which includes enhanced electronic imaging, smart surveillance, self-driving cars, intelligent medical diagnosis, etc. Exposure fusion is an essential HDR technique which fuses different exposures of the same scene into an HDR-like image. However, determining the appropriate fusion weights is difficult because each differently exposed image only contains a subset of the scene's details. When blending, the problem of local color inconsistency is more challenging; thus, it often requires manual tuning to avoid image artifacts. To address this problem, we present an adaptive coarse-to-fine searching approach to find the optimal fusion weights. In the coarse-tuning stage, fuzzy logic is used to efficiently decide the initial weights. In the fine-tuning stage, the multivariate normal conditional random field model is used to adjust the fuzzy-based initial weights which allows us to consider both intra- and inter-image information in the data. Moreover, a multiscale enhanced fusion scheme is proposed to blend input images when maintaining the details in each scale-level. The proposed fuzzy-based MNCRF (Multivariate Normal Conditional Random Fields) fusion method provided a smoother blending result and a more natural look. Meanwhile, the details in the highlighted and dark regions were preserved simultaneously. The experimental results demonstrated that our work outperformed the state-of-the-art methods not only in several objective quality measures but also in a user study analysis.

20.
Front Neurosci ; 13: 421, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133777

RESUMO

Two-photon imaging of fluorescently labeled microglia in vivo provides a direct approach to measure motility of microglial processes as a readout of microglial function that is crucial in the context of neurodegenerative diseases, as well as to understand the neuroinflammatory response to implanted substrates and brain-computer interfaces. In this longitudinal study, we quantified surveilling and photodamage-directed microglial processes motility in both acute and chronic cranial window preparations and compared the motility under isoflurane and ketamine anesthesia to an awake condition in the same animal. The isoflurane anesthesia increased the length of surveilling microglial processes in both acute and chronic preparations, while ketamine increased the number of microglial branches in acute preparation only. In chronic (but not acute) preparation, the extension of microglial processes toward the laser-ablated microglial cell was faster under isoflurane (but not ketamine) anesthesia than in awake mice, indicating distinct effects of anesthetics and of preparation type. These data reveal potentiating effects of isoflurane on microglial response to damage, and provide a framework for comparison and optimal selection of experimental conditions for quantitative analysis of microglial function using two-photon microscopy in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...