Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(4): 1625-1638, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38403951

RESUMO

Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Lipossomos/química , Ácido N-Acetilneuramínico/química , Neoplasias da Mama/tratamento farmacológico , Vacinas contra COVID-19 , Paclitaxel/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Lipídeos , Cátions , Linhagem Celular Tumoral
2.
PNAS Nexus ; 3(2): pgae053, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380057

RESUMO

The effective utilization of cellulose and hemicellulose, the main components of plant biomass, is a key technical obstacle that needs to be overcome for the economic viability of lignocellulosic biorefineries. Here, we firstly demonstrated that the thermophilic cellulolytic fungus Myceliophthora thermophila can simultaneously utilize cellulose and hemicellulose, as evidenced by the independent uptake and intracellular metabolism of cellodextrin and xylodextrin. When plant biomass serviced as carbon source, we detected the cellodextrin and xylodextrin both in cells and in the culture medium, as well as high enzyme activities related to extracellular oligosaccharide formation and intracellular oligosaccharide hydrolysis. Sugar consumption assay revealed that in contrast to inhibitory effect of glucose on xylose and cellodextrin/xylodextrin consumption in mixed-carbon media, cellodextrin and xylodextrin were synchronously utilized in this fungus. Transcriptomic analysis also indicated simultaneous induction of the genes involved in cellodextrin and xylodextrin metabolic pathway, suggesting carbon catabolite repression (CCR) is triggered by extracellular glucose and can be eliminated by the intracellular hydrolysis and metabolism of oligosaccharides. The xylodextrin transporter MtCDT-2 was observed to preferentially transport xylobiose and tolerate high cellobiose concentrations, which helps to bypass the inhibition of xylobiose uptake. Furthermore, the expression of cellulase and hemicellulase genes was independently induced by their corresponding inducers, which enabled this strain to synchronously utilize cellulose and hemicellulose. Taken together, the data presented herein will further elucidate the degradation of plant biomass by fungi, with implications for the development of consolidated bioprocessing-based lignocellulosic biorefinery.

3.
Microb Cell Fact ; 22(1): 150, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568174

RESUMO

BACKGROUND: Glucoamylase is an important enzyme for starch saccharification in the food and biofuel industries and mainly produced from mesophilic fungi such as Aspergillus and Rhizopus species. Enzymes produced from thermophilic fungi can save the fermentation energy and reduce costs as compared to the fermentation system using mesophiles. Thermophilic fungus Myceliophthora thermophila is industrially deployed fungus to produce enzymes and biobased chemicals from biomass during optimal growth at 45 °C. This study aimed to construct the M. thermophila platform for glucoamylase hyper-production by broadening genomic targeting range of the AsCas12a variants, identifying key candidate genes and strain engineering. RESULTS: In this study, to increase the genome targeting range, we upgraded the CRISPR-Cas12a-mediated technique by engineering two AsCas12a variants carrying the mutations S542R/K607R and S542R/K548V/N552R. Using the engineered AsCas12a variants, we deleted identified key factors involved in the glucoamylase expression and secretion in M. thermophila, including Mtstk-12, Mtap3m, Mtdsc-1 and Mtsah-2. Deletion of four targets led to more than 1.87- and 1.85-fold higher levels of secretion and glucoamylases activity compared to wild-type strain MtWT. Transcript level of the major amylolytic genes showed significantly increased in deletion mutants. The glucoamylase hyper-production strain MtGM12 was generated from our previously strain MtYM6 via genetically engineering these targets Mtstk-12, Mtap3m, Mtdsc-1 and Mtsah-2 and overexpressing Mtamy1 and Mtpga3. Total secreted protein and activities of amylolytic enzymes in the MtGM12 were about 35.6-fold and 51.9‒55.5-fold higher than in MtWT. Transcriptional profiling analyses revealed that the amylolytic gene expression levels were significantly up-regulated in the MtGM12 than in MtWT. More interestingly, the MtGM12 showed predominantly short and highly bulging hyphae with proliferation of rough ER and abundant mitochondria, secretion vesicles and vacuoles when culturing on starch. CONCLUSIONS: Our results showed that these AsCas12a variants worked well for gene deletions in M. thermophila. We successfully constructed the glucoamylase hyper-production strain of M. thermophila by the rational redesigning and engineering the transcriptional regulatory and secretion pathway. This targeted engineering strategy will be very helpful to improve industrial fungal strains and promote the morphology engineering for enhanced enzyme production.


Assuntos
Glucana 1,4-alfa-Glucosidase , Engenharia Metabólica , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Fungos/metabolismo , Amido/metabolismo
4.
ACS Appl Mater Interfaces ; 15(27): 32110-32120, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384837

RESUMO

In recent years, cationic liposomes have been successfully used as delivery platforms for mRNA vaccines. Poly(ethylene glycol) (PEG)-lipid derivatives are widely used to enhance the stability and reduce the toxicity of cationic liposomes. However, these derivatives are often immunogenic, triggering the rise of anti-PEG antibodies. Understanding the role and impact of PEG-lipid derivatives on PEGylated cationic liposomes is key to solving the PEG dilemma. In this study, we designed linear, branched, and cleavable-branched cationic liposomes modified with PEG-lipid derivatives and investigated the effect of the liposome-induced accelerated blood clearance (ABC) phenomenon on photothermal therapy. Our study indicated that the linear PEG-lipid derivatives mediated the effect of photothermal therapy by stimulating splenic marginal zone (MZ) B cells to secrete anti-PEG antibodies and increasing the level of IgM expression in the follicular region of the spleen. However, the cleavable-branched and branched PEG-lipid derivatives did not activate the complement system and avoided the ABC phenomenon by inducing noticeably lower levels of anti-PEG antibodies. The cleavable-branched PEGylated cationic liposomes improved the effect of photothermal therapy by reversing the charge on the liposome surface. This detailed study of PEG-lipid derivatives contributes to the further development and clinical application of PEGylated cationic liposomes.


Assuntos
Lipossomos , Polímeros , Terapia Fototérmica , Imunoglobulina M , Polietilenoglicóis , Lipídeos
5.
Anal Methods ; 15(16): 1953-1958, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36928715

RESUMO

As an important trace element in the human body, the concentration of Cu2+ has an important impact on the environment and human health, and its quantitative determination is of great significance in the fields of environmental protection and food safety. Here, a ratiometric fluorescent probe based on Tb(III)-functionalized UiO-66-type MOFs has been synthesized via a facile post-synthetic modification method by employing mixed linkers containing terephthalic acid and 2,6-pyridinedicarboxylic acid for Cu2+ detection. The blue fluorescence intensity at 440 nm from the ligands of MOFs does not change much with increasing Cu2+ concentrations and can be used as a reference signal, while the green fluorescence of Tb3+ can be rapidly and selectively quenched, causing fluorescence intensity at 547 nm to decrease. The probe can be used as a ratiometric sensor for Cu2+ detection with a good linear response and low detection limit. The use of the probe for the determination of Cu2+ in real water samples and drinks shows good practicality. This method for Cu2+ detection is simple, specific and visualized to meet the needs of environmental monitoring and food analysis and provides a new strategy for the construction of new copper ion fluorescent sensors to analyze complex samples.

6.
Biomater Sci ; 11(8): 2787-2808, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36825722

RESUMO

The recent approvals for antibody-drug conjugates (ADCs) in multiple malignancies in the past few years have fueled the ongoing development of this class of drug. However, the limitation of ADCs is selectivity toward cancer cells especially overexpressing the antigen of interest. To broaden the anti-cancer spectrum of ADCs, combinatorial strategies of ADCs with chemotherapy have become a central focus of the current preclinical and clinical research. Here, we used the microtubule stabilizer paclitaxel and enfortumab vedotin-ejfv (EV), an ADC carrying the microtubule inhibitor payload monomethyl auristatin E (MMAE), for co-administration under the consideration of their mechanism of action associated with microtubules. We designed a sialic acid-cholesterol (SA-CH) conjugate-modified cationic liposome platform loaded with PTX (PTX-SAL) for efficiently targeting tumor-associated immune cells. Compared with monotherapy, PTX-SAL-mediated combination therapy with ADCs significantly inhibited S180 tumor growth in mice, with complete tumor regression occurring. The formation of a durable tumor-specific immunological memory response in mice that experienced complete tumor regression was assessed by secondary tumor cell rechallenge, and the production of memory T cells in the spleen was detected as related to the increased CD4+T memory cells and the enhanced serum IFN-γ. All our preliminary results throw light on the tremendous application potential for the application of this combination therapy regimen capable of mounting a durable immune response and stimulating a robust T cell-mediated tumor-specific immunological memory.


Assuntos
Imunoconjugados , Paclitaxel , Camundongos , Animais , Lipossomos , Ácido N-Acetilneuramínico , Memória Imunológica , Linhagem Celular Tumoral
7.
Biotechnol Biofuels Bioprod ; 16(1): 13, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691040

RESUMO

BACKGROUND: With D-xylose being the second most abundant sugar in nature, its conversion into products could significantly improve biomass-based process economy. There are two well-studied phosphorylative pathways for D-xylose metabolism. One is isomerase pathway mainly found in bacteria, and the other one is oxo-reductive pathway that always exists in fungi. Except for these two pathways, there are also non-phosphorylative pathways named xylose oxidative pathways and they have several advantages over traditional phosphorylative pathways. In Myceliophthora thermophila, D-xylose can be metabolized through oxo-reductive pathway after plant biomass degradation. The survey of non-phosphorylative pathways in this filamentous fungus will offer a potential way for carbon-efficient production of fuels and chemicals using D-xylose. RESULTS: In this study, an alternative for utilization of D-xylose, the non-phosphorylative Weimberg pathway was established in M. thermophila. Growth on D-xylose of strains whose D-xylose reductase gene was disrupted, was restored after overexpression of the entire Weimberg pathway. During the construction, a native D-xylose dehydrogenase with highest activity in M. thermophila was discovered. Here, M. thermophila was also engineered to produce 1,2,4-butanetriol using D-xylose through non-phosphorylative pathway. Afterwards, transcriptome analysis revealed that the D-xylose dehydrogenase gene was obviously upregulated after deletion of D-xylose reductase gene when cultured in a D-xylose medium. Besides, genes involved in growth were enriched in strains containing the Weimberg pathway. CONCLUSIONS: The Weimberg pathway was established in M. thermophila to support its growth with D-xylose being the sole carbon source. Besides, M. thermophila was engineered to produce 1,2,4-butanetriol using D-xylose through non-phosphorylative pathway. To our knowledge, this is the first report of non-phosphorylative pathway recombinant in filamentous fungi, which shows great potential to convert D-xylose to valuable chemicals.

8.
Eur J Pharm Biopharm ; 184: 50-61, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682511

RESUMO

Although anti-tumor strategies targeting tumor-associated immune cells were being rapidly developed, the preparations were usually limited in targeting efficiency. To overcome this barrier, this study reported a novel sialic acid-octadecylamine (SA-ODA) and monosialotetrahexosylganglioside (GM1) co-modified epirubicin liposomes (5-5-SAGL-EPI), which improved tumor-targeting ability through the active targeting of tumor-associated macrophages (TAMs) by SA-ODA and the long circulation of GM1. Thus, we evaluated 5-5-SAGL-EPI in vitro and in vivo. Analysis of cellular uptake by RAW264.7 cells using flow cytometry and confocal microscopy showed a higher rate of cellular uptake for 5-5-SAGL-EPI than for the common liposomes (CL-EPI). In pharmacokinetic studies using Wistar rats, compared to CL-EPI, 5-5-SAGL-EPI showed a higher circulation time in vivo. Tissue distribution studies in Kunming mice bearing S180 tumors revealed increased distribution of 5-5-SAGL-EPI in tumor tissues compared with liposomes modified with single ligands (SA-ODA [5-SAL-EPI] or GM1 [5-GL-EPI]). In vivo anti-tumor experiments using the S180 tumor-bearing mice revealed a high tumor inhibition rate and low toxicity for 5-5-SAGL-EPI. Moreover, freeze-dried 5-5-SAGL-EPI had good storage stability, and the anti-tumor effect was comparable to that before freeze-drying. Overall, 5-5-SAGL-EPI exhibited excellent anti-tumor effects before and after lyophilization.


Assuntos
Lipossomos , Ácido N-Acetilneuramínico , Camundongos , Ratos , Animais , Lipossomos/farmacologia , Ácido N-Acetilneuramínico/farmacologia , Macrófagos Associados a Tumor , Microambiente Tumoral , Gangliosídeo G(M1)/farmacologia , Ratos Wistar , Linhagem Celular Tumoral
9.
Phys Rev Lett ; 130(2): 021802, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36706410

RESUMO

A search for interactions from solar ^{8}B neutrinos elastically scattering off xenon nuclei using PandaX-4T commissioning data is reported. The energy threshold of this search is further lowered compared with the previous search for dark matter, with various techniques utilized to suppress the background that emerges from data with the lowered threshold. A blind analysis is performed on the data with an effective exposure of 0.48 tonne year, and no significant excess of events is observed. Among the results obtained using the neutrino-nucleus coherent scattering, our results give the best constraint on the solar ^{8}B neutrino flux. We further provide a more stringent limit on the cross section between dark matter and nucleon in the mass range from 3 to 9 GeV/c^{2}.

10.
Sci Bull (Beijing) ; 67(2): 125-132, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546005

RESUMO

The 25Mg(p, γ)26Al reaction plays an important role in the study of cosmic 1.809 MeV γ-ray as a signature of ongoing nucleosynthesis in the Galaxy. At astrophysical temperature around 0.1 GK, the 25Mg(p, γ)26Al reaction rates are dominated by the 92 keV resonance capture process. We report a precise measurement of the 92 keV 25Mg(p, γ)26Al resonance in the day-one experiment at Jinping Underground Nuclear Astrophysics experiment (JUNA) facility in the China Jinping Underground Laboratory (CJPL). The resonance strength and ground state feeding factor are determined to be 3.8±0.3 ×10-10 eV and 0.66±0.04, respectively. The results are in agreement with those reported in the previous direct underground measurement within uncertainty, but with significantly reduced uncertainties. Consequently, we recommend new 25Mg(p, γ)26Al reaction rates which are by a factor of 2.4 larger than those adopted in REACLIB database at the temperature around 0.1 GK. The new results indicate higher production rates of 26gAl and the cosmic 1.809 MeV γ-ray. The implication of the new rates for the understanding of other astrophysical situations is also discussed.

11.
Front Microbiol ; 13: 1029361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338048

RESUMO

Dextrose equivalent of glucose from starch hydrolysis is a critical index for starch-hydrolysis industry. Improving glucose yield and decreasing the non]-fermentable sugars which caused by transglycosylation activity of the enzymes during the starch saccharification is an important direction. In this study, we identified two key α-glucosidases responsible for producing non-fermentable sugars in an industrial glucoamylase-producing strain Aspergillus niger O1. The results showed the transglycosylation product panose was decreased by more than 88.0% in agdA/agdB double knock-out strains than strain O1. Additionally, the B-P1 domain of agdB was found accountable as starch hydrolysis activity only, and B-P1 overexpression in ΔAΔB-21 significantly increased glucoamylase activity whereas keeping the glucoamylase cocktail low transglycosylation activity. The total amounts of the transglycosylation products isomaltose and panose were significantly decreased in final strain B-P1-3 by 40.7% and 44.5%, respectively. The application of engineered strains will decrease the cost and add the value of product for starch biorefinery.

12.
Biology (Basel) ; 11(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36290301

RESUMO

The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes, particularly glucoamylase. Although a variety of genetic techniques have been successfully used in wild-type A. niger, the transformation of industrially used strains with few conidia (e.g., A. niger N1) or that are even aconidial (e.g., A. niger O1) remains laborious. Herein, we developed genetic tools, including the protoplast-mediated transformation and Agrobacterium tumefaciens-mediated transformation of the A. niger strains N1 and O1 using green fluorescent protein as a reporter marker. Following the optimization of various factors for protoplast release from mycelium, the protoplast-mediated transformation efficiency reached 89.3% (25/28) for N1 and 82.1% (32/39) for O1. The A. tumefaciens-mediated transformation efficiency was 98.2% (55/56) for N1 and 43.8% (28/64) for O1. We also developed a marker-free CRISPR/Cas9 genome editing system using an AMA1-based plasmid to express the Cas9 protein and sgRNA. Out of 22 transformants, 9 albA deletion mutants were constructed in the A. niger N1 background using the protoplast-mediated transformation method and the marker-free CRISPR/Cas9 system developed here. The genome editing methods improved here will accelerate the elucidation of the mechanism of glucoamylase hyperproduction in these industrial fungi and will contribute to the use of efficient targeted mutation in other industrial strains of A. niger.

13.
Phys Rev Lett ; 129(16): 161803, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306747

RESUMO

Compared with the signature of dark matter elastic scattering off nuclei, the absorption of fermionic dark matter by nuclei opens up a new searching channel for light dark matter with a characteristic monoenergetic signal. In this Letter, we explore the 95.0-day data from the PandaX-4T commissioning run and report the first dedicated searching results of the fermionic dark matter absorption signal through a neutral current process. No significant signal was found, and the lowest limit on the dark matter-nucleon interaction cross section is set to be 1.5×10^{-50} cm^{2} for a fermionic dark matter mass of 40 MeV/c^{2} with 90% confidence level.

14.
Phys Rev Lett ; 129(16): 161804, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306755

RESUMO

We report a search on sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne year exposure collected by the PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and the electron. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such a dark matter candidate into photon final states. In particular, we present the first direct detection limits for a vector (axial-vector) interaction which are the strongest in the mass range from 35 to 55 (25 to 45) keV/c^{2} in comparison to other astrophysical and cosmological constraints.

15.
Luminescence ; 37(10): 1793-1799, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35946061

RESUMO

The increasing degradation of ecosystems due to heavy metal residues has led to environment and food contamination, prompting the development of convenient platforms for monitoring heavy metals. Here, a new dual-emission fluorescent sensor CuNCs@Tb@UiO-66-(COOH)2 for the detection of copper ions (Cu2+ ) has been synthesized using one-pot encapsulation of Tb(III) and glutathione-stabilized copper nanoclusters (CuNCs) into metal-organic frameworks (MOFs) UiO-66-(COOH)2 . In this ratiometric sensor, the fluorescence intensity of Tb3+ decreased significantly upon the addition of Cu2+ , whereas that of CuNCs showed good stability, together with an apparent colour change. Therefore, ratiometric fluorescence detection of Cu2+ can be accomplished by measuring the ratio of the fluorescence intensity at the 450 nm (F450 ) wavelength of CuNCs to the 548 nm (F548 ) emission of Tb3+ in the fluorescence spectra of the CuNCs@Tb@UiO-66-(COOH)2 suspension. Moreover, the obtained fluorescent probe showed good results in the detection of actual samples. This work can provide the basis of method for the exploration of ratiometric fluorescence and visual sensors of trace pollutants analysis in complicated samples.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Cobre/química , Ecossistema , Corantes Fluorescentes/química , Glutationa , Limite de Detecção , Estruturas Metalorgânicas/química , Ácidos Ftálicos , Espectrometria de Fluorescência/métodos
16.
Anal Sci ; 38(10): 1305-1312, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35838911

RESUMO

A facile and efficient "bottle-around-ship" approach for preparing the ratiometric fluorescent probe has been developed by encapsulating the red-colored fluorescence CdTe quantum dots (QDs) and blue-colored fluorescence graphitic carbon nitride quantum dots (g-CNQDs) into the zeolitic imidazolate metal-organic frameworks (ZIF-8) in one step. At a single excitation of 360 nm, the obtained probe ZIF-8@g-CNQD/CdTe shows the dual-emission peaked at 450 and 633 nm, respectively. The red emission of CdTe QDs is selectively quenched by the Hg2+, whereas the blue fluorescence of g-CNQDs as an internal reference is insensitive, resulting in an apparent color transformation from pink to blue for special recognition of Hg2+. By this approach, the relative fluorescence intensity ratio (F633/F450) decreased linearly with increasing Hg2+ concentration in the 0.2-3.5 µM range with a low limit of detection (LOD) of ~ 46 nM. Therefore, we demonstrate that this "bottle-around-ship" process provides a new strategy for the construction of ratiometric fluorescent Hg2+ probes with good simplicity, high efficiency, and excellent stabilities. Moreover, the obtained Hg2+ fluorescent probe shows good results in the detection of actual samples.


Assuntos
Compostos de Cádmio , Mercúrio , Estruturas Metalorgânicas , Pontos Quânticos , Carbono , Corantes Fluorescentes , Grafite , Limite de Detecção , Mercúrio/análise , Nitrilas , Compostos de Nitrogênio , Navios , Espectrometria de Fluorescência/métodos , Telúrio
17.
Phys Rev Lett ; 128(17): 171801, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570440

RESUMO

We report a novel search for the cosmic-ray boosted dark matter using the 100 tonne·day full dataset of the PandaX-II detector located at the China Jinping Underground Laboratory. With the extra energy gained from the cosmic rays, sub-GeV dark matter particles can produce visible recoil signals in the detector. The diurnal modulations in rate and energy spectrum are utilized to further enhance the signal sensitivity. Our result excludes the dark matter-nucleon elastic scattering cross section between 10^{-31} and 10^{-28} cm^{2} for dark matter masses from 0.1 MeV/c^{2} to 0.1 GeV/c^{2}, with a large parameter space previously unexplored by experimental collaborations.

18.
Research (Wash D C) ; 2022: 9798721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38645679

RESUMO

Precise measurement of two-neutrino double beta decay (DBD) half-life is an important step for the searches of Majorana neutrinos with neutrinoless double beta decay. We report the measurement of DBD half-life of 136Xe using the PandaX-4T dual-phase Time Projection Chamber (TPC) with 3.7-tonne natural xenon and the first 94.9-day physics data release. The background model in the fiducial volume is well constrained in situ by events in the outer active region. With a 136Xe exposure of 15.5 kg-year, we establish the half-life as 2.27 ± 0.03(stat.) ± 0.10(syst.) × 1021 years. This is the first DBD half-life measurement with natural xenon and demonstrates the physics capability of a large-scale liquid xenon TPC in the field of rare event searches.

19.
Biotechnol Biofuels ; 14(1): 225, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838099

RESUMO

BACKGROUND: Starch is one of the most important renewable polysaccharides in nature for production of bio-ethanol. The starch saccharification step facilitates the depolymerization of starch to yield glucose for biofuels production. The filamentous fungus Aspergillus niger (A. niger) is the most used microbial cell factory for production of the commercial glucoamylase. However, the role of each component in glucoamylases cocktail of A. niger O1 for starch saccharification remains unclear except glucoamylase. RESULTS: In this study, we identified the key enzymes contributing to the starch saccharification process are glucoamylase, α-amylase and acid α-amylase out of 29 glycoside hydrolases from the 6-day fermentation products of A. niger O1. Through the synergistic study of the multienzymes for the starch saccharification in vitro, we found that increasing the amount of α-amylase by 5-10 times enhanced the efficiency of starch saccharification by 14.2-23.2%. Overexpression of acid α-amylase in strain O1 in vivo increased the total glucoamylase activity of O1 cultures by 15.0%. CONCLUSIONS: Our study clarifies the synergistic effects among the components of glucoamylases cocktail, and provides an effective approach to optimize the profile of saccharifying enzymes of strain O1 for improving the total glucoamylase activity.

20.
Biotechnol Biofuels ; 14(1): 186, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556173

RESUMO

BACKGROUND: Consolidated bioprocessing (CBP) technique is a promising strategy for biorefinery construction, producing bulk chemicals directly from plant biomass without extra hydrolysis steps. Fixing and channeling CO2 into carbon metabolism for increased carbon efficiency in producing value-added compounds is another strategy for cost-effective bio-manufacturing. It has not been reported whether these two strategies can be combined in one microbial platform. RESULTS: In this study, using the cellulolytic thermophilic fungus Myceliophthora thermophila, we designed and constructed a novel biorefinery system DMCC (Direct microbial conversion of biomass with CO2 fixation) through incorporating two CO2 fixation modules, PYC module and Calvin-Benson-Bassham (CBB) pathway. Harboring the both modules, the average rate of fixing and channeling 13CO2 into malic acid in strain CP51 achieved 44.4, 90.7, and 80.7 mg/L/h, on xylose, glucose, and cellulose, respectively. The corresponding titers of malic acid were up to 42.1, 70.4, and 70.1 g/L, respectively, representing the increases of 40%, 10%, and 7%, respectively, compared to the parental strain possessing only PYC module. The DMCC system was further improved by enhancing the pentose uptake ability. Using raw plant biomass as the feedstock, yield of malic acid produced by the DMCC system was up to 0.53 g/g, with 13C content of 0.44 mol/mol malic acid, suggesting DMCC system can produce 1 t of malic acid from 1.89 t of biomass and fix 0.14 t CO2 accordingly. CONCLUSIONS: This study designed and constructed a novel biorefinery system named DMCC, which can convert raw plant biomass and CO2 into organic acid efficiently, presenting a promising strategy for cost-effective production of value-added compounds in biorefinery. The DMCC system is one of great options for realization of carbon neutral economy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...