Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370665

RESUMO

Chimeric antigen receptor (CAR) T cells are an effective treatment for some blood cancers. However, the lack of tumor-specific surface antigens limits their wider use. We identified a set of surface antigens that are limited in their expression to cancer and the central nervous system (CNS). We developed CAR T cells against one of these antigens, LINGO1, which is widely expressed in Ewing sarcoma (ES). To prevent CNS targeting, we engineered LINGO1 CAR T cells lacking integrin α4 (A4ko), an adhesion molecule essential for migration across the blood-brain barrier. A4ko LINGO1 CAR T cells were efficiently excluded from the CNS but retained efficacy against ES. We show that altering adhesion behavior expands the set of surface antigens targetable by CAR T cells.

2.
Proc Natl Acad Sci U S A ; 121(9): e2309153121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386711

RESUMO

The molecular mechanisms leading to the establishment of immunological memory are inadequately understood, limiting the development of effective vaccines and durable antitumor immune therapies. Here, we show that ectopic OCA-B expression is sufficient to improve antiviral memory recall responses, while having minimal effects on primary effector responses. At peak viral response, short-lived effector T cell populations are expanded but show increased Gadd45b and Socs2 expression, while memory precursor effector cells show increased expression of Bcl2, Il7r, and Tcf7 on a per-cell basis. Using an OCA-B mCherry reporter mouse line, we observe high OCA-B expression in CD4+ central memory T cells. We show that early in viral infection, endogenously elevated OCA-B expression prospectively identifies memory precursor cells with increased survival capability and memory recall potential. Cumulatively, the results demonstrate that OCA-B is both necessary and sufficient to promote CD4 T cell memory in vivo and can be used to prospectively identify memory precursor cells.


Assuntos
Linfócitos T CD4-Positivos , Células T de Memória , Animais , Camundongos , Memória Imunológica , Memória , Receptores de Interleucina-7 , Transativadores , Proteínas GADD45 , Antígenos de Diferenciação
3.
Immunohorizons ; 7(8): 587-599, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610299

RESUMO

Activated B cells experience metabolic changes that require mitochondrial remodeling, in a process incompletely defined. In this study, we report that mitochondrial antiviral signaling protein (MAVS) is involved in BCR-initiated cellular proliferation and prolonged survival. MAVS is well known as a mitochondrial-tethered signaling adaptor with a central role in viral RNA-sensing pathways that induce type I IFN. The role of MAVS downstream of BCR stimulation was recognized in absence of IFN, indicative of a path for MAVS activation that is independent of viral infection. Mitochondria of BCR-activated MAVS-deficient mouse B cells exhibited a damaged phenotype including disrupted mitochondrial morphology, excess mitophagy, and the temporal progressive blunting of mitochondrial oxidative capacity with mitochondrial hyperpolarization and cell death. Costimulation of MAVS-deficient B cells with anti-CD40, in addition to BCR stimulation, partially corrected the mitochondrial structural defects and functionality. Our data reveal a (to our knowledge) previously unrecognized role of MAVS in controlling the metabolic fitness of B cells, most noticeable in the absence of costimulatory help.


Assuntos
Linfócitos B , Transdução de Sinais , Animais , Camundongos , Antígenos CD40 , Proliferação de Células , Mitocôndrias
4.
Psychophysiology ; 60(12): e14390, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37455343

RESUMO

People value the opportunity to exercise control over the environment or make their own choices. Recent studies have revealed that simply having the opportunity to make choices can facilitate memory performance, suggesting an interaction between reward (due to choice making) and memory systems. However, little is known about the electrophysiological basis of choice-related memory. In the current study, we used scalp electroencephalography combined with a choice encoding task to examine the role of theta oscillations (which have been widely connected to reward and memory processing) in choice-related memory formation. The encoding task had two conditions. In the choice condition, participants were asked to choose between two occluded memoranda by themselves, whereas in the fixed condition, the decision was made by the computer. Behavioral results showed the choice effect, with better performance in the choice condition than the fixed condition on the recognition test given after a 24-h delay. Increases in theta power during an early latency of encoding period predicted successful memory formation in the choice condition, but not in the fixed condition. Furthermore, decreases in theta power during a late latency predicted successful memory formation in both the fixed and the choice conditions. Finally, we observed increased theta power in the choice condition compared to the fixed condition during an early latency of encoding period and decreased theta power in the choice condition compared to the fixed condition during a late latency. Our results suggest that theta oscillations play a significant role in choice-related memory formation.


Assuntos
Eletroencefalografia , Ritmo Teta , Humanos , Ritmo Teta/fisiologia , Eletroencefalografia/métodos , Memória/fisiologia , Cognição
5.
Artigo em Inglês | MEDLINE | ID: mdl-36674091

RESUMO

With the acceleration of China's industrialization and urbanization, there is a large number of left-behind children in China who are reported with more challenges in development. The study aims to analyze the differences in family socioeconomic status (SES) and discrimination perception between left-behind children and non-left-behind children and further explore whether SES or discrimination perception has a greater impact on the problem behaviors of left-behind children. We found the family SES of left-behind children was significantly lower than that of non-left-behind children; left-behind children's perceived discrimination was significantly higher than that of non-left-behind children; perceived discrimination of left-behind children had a greater impact on their problem behavior than the family SES.


Assuntos
Comportamento Problema , Humanos , Criança , Discriminação Percebida , Classe Social , China , População Rural
6.
Food Res Int ; 153: 110913, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35227466

RESUMO

This study proposed an optimal way to supplement organic selenium, boost polysaccharides solubility, antioxidant, anticancer, immune responses. A purified polysaccharide fraction of Sagittaria sagittifolia L. (PSSP) was successfully modified with selenium (Se-PSSP), and its characteristics, antioxidant, antineoplastic and immune activities were studied. The structure and the monosaccharide composition were determined by means of UV-visible spectrometry, FT-IR spectra, NMR spectra, X-ray diffraction spectroscopy (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM). The results showed that both PSSP and Se-PSSP contained a pyranoid polysaccharide linked by α-glycosidic bonds in the main chain. In addition, PSSP and Se-PSSP were amorphous morphology without three-helix conformation. PSSP (47.12 kDa) was mainly composed of glucose, mannose and xylose with molar percentages of 55.82%, 14.86% and 14.35%, respectively. Se-PSSP (16.82 kDa) is mainly composed of glucose, xylose and galactose with molar percentages of 26.49%, 18.76% and 18.14%, respectively. Compared with PSSP, Se-PSSP showed stronger water-solubility, antioxidant activity, cytotoxicity and immunomodulatory activity than that of PSSP. These results suggested that Se-PSSP is a promising novel Se-supplement and may be served as an excellent potential antioxidant, antineoplastic, and immunomodulatory agents in the field of functional foods and medicine industry.


Assuntos
Antineoplásicos , Sagittaria , Selênio , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Sagittaria/química , Selênio/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Mol Cancer Res ; 20(4): 501-514, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980595

RESUMO

Growth factor independence-1 (GFI1) is a transcriptional repressor and master regulator of normal and malignant hematopoiesis. Repression by GFI1 is attributable to recruitment of LSD1-containing protein complexes via its SNAG domain. However, the full complement of GFI1 partners in transcriptional control is not known. We show that in T-acute lymphoblastic leukemia (ALL) cells, GFI1 and IKAROS are transcriptional partners that co-occupy regulatory regions of hallmark T-cell development genes. Transcriptional profiling reveals a subset of genes directly transactivated through the GFI1-IKAROS partnership. Among these is NOTCH3, a key factor in T-ALL pathogenesis. Surprisingly, NOTCH3 expression by GFI1 and IKAROS requires the GFI1 SNAG domain but occurs independent of SNAG-LSD1 binding. GFI1 variants deficient in LSD1 binding fail to activate NOTCH3, but conversely, small molecules that disrupt the SNAG-LSD1 interaction while leaving the SNAG primary structure intact stimulate NOTCH3 expression. These results identify a noncanonical transcriptional control mechanism in T-ALL which supports GFI1-mediated transactivation in partnership with IKAROS and suggest competition between LSD1-containing repressive complexes and others favoring transactivation. IMPLICATIONS: Combinatorial diversity and cooperation between DNA binding proteins and complexes assembled by them can direct context-dependent transcriptional outputs to control cell fate and may offer new insights for therapeutic targeting in cancer.


Assuntos
Proteínas de Ligação a DNA , Regulação Leucêmica da Expressão Gênica , Fator de Transcrição Ikaros , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Immunol ; 208(2): 328-337, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34893527

RESUMO

T cells must shift their metabolism to respond to infections and tumors and to undergo memory formation. The ATP-binding cassette transporter ABCB10 localizes to the mitochondrial inner membrane, where it is thought to export a substrate important in heme biosynthesis and metabolism, but its role in T cell development and activation is unknown. In this article, we use a combination of methods to study the effect of ABCB10 loss in primary and malignantly transformed T cells. Although Abcb10 is dispensable for development of both CD4+ and CD8+ T cells, it is required for expression of specific cytokines in CD4+, but not CD8+, T cells activated in vitro. These defects in cytokine expression are magnified on repeated stimulation. In vivo, CD8+ cells lacking ABCB10 expand more in response to viral infection than their control counterparts, while CD4+ cells show reductions in both number and percentage. CD4+ cells lacking ABCB10 show impairment in Ag-specific memory formation and recall responses that become more severe with time. In malignant human CD4+ Jurkat T cells, we find that CRISPR-mediated ABCB10 disruption recapitulates the same cytokine expression defects upon activation as observed in primary mouse T cells. Mechanistically, ABCB10 deletion in Jurkat T cells disrupts the ability to switch to aerobic glycolysis upon activation. Cumulatively, these results show that ABCB10 is selectively required for specific cytokine responses and memory formation in CD4+ T cells, suggesting that targeting this molecule could be used to mitigate aberrant T cell activation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Linfócitos T CD4-Positivos/imunologia , Citocinas/biossíntese , Memória Imunológica/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocinas/imunologia , Glicólise/fisiologia , Humanos , Memória Imunológica/genética , Células Jurkat , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Proc Natl Acad Sci U S A ; 117(28): 16567-16578, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32606244

RESUMO

Malaria infection induces complex and diverse immune responses. To elucidate the mechanisms underlying host-parasite interaction, we performed a genetic screen during early (24 h) Plasmodium yoelii infection in mice and identified a large number of interacting host and parasite genes/loci after transspecies expression quantitative trait locus (Ts-eQTL) analysis. We next investigated a host E3 ubiquitin ligase gene (March1) that was clustered with interferon (IFN)-stimulated genes (ISGs) based on the similarity of the genome-wide pattern of logarithm of the odds (LOD) scores (GPLS). March1 inhibits MAVS/STING/TRIF-induced type I IFN (IFN-I) signaling in vitro and in vivo. However, in malaria-infected hosts, deficiency of March1 reduces IFN-I production by activating inhibitors such as SOCS1, USP18, and TRIM24 and by altering immune cell populations. March1 deficiency increases CD86+DC (dendritic cell) populations and levels of IFN-γ and interleukin 10 (IL-10) at day 4 post infection, leading to improved host survival. T cell depletion reduces IFN-γ level and reverse the protective effects of March1 deficiency, which can also be achieved by antibody neutralization of IFN-γ. This study reveals functions of MARCH1 (membrane-associated ring-CH-type finger 1) in innate immune responses and provides potential avenues for activating antimalaria immunity and enhancing vaccine efficacy.


Assuntos
Malária/imunologia , Plasmodium yoelii/fisiologia , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Malária/enzimologia , Malária/genética , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium yoelii/imunologia , Ubiquitina-Proteína Ligases/genética
11.
Clin Psychol Rev ; 76: 101814, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31945711

RESUMO

The Four Immeasurables Meditations (FIM) intervention have been shown as a promising intervention for reducing depressive symptoms. The current study is a systematic review of FIM intervention effects on depressive symptoms. Among 192 empirical research articles on FIM published before May 2019, 40 independent trials from 35 records measured depressive symptoms. The meta-analysis included 21 randomized controlled trials (RCT; n = 1468) and 16 uncontrolled trials (n = 376). The results supported overall effectiveness of FIM on depressive symptoms (d = 0.38 for RCT and d = 0.87 for uncontrolled trials). Moderator analysis indicated the effects differed across protocols, and effects were smaller in RCT using active control groups. No significant differences were observed for participant type, measures, intervention length, or intervention components. Individual studies found no direct association between meditation practice time and effects, and mindfulness and self-compassion were widely supported as mechanisms of change. Current evidence supports FIM as an effective intervention for reducing depressive symptoms, but additional studies with more rigorous designs using active control groups are needed. Further investigation should be encouraged regarding specific protocols and participants, the contribution of meditation practice, and other mechanisms such as positive emotions.


Assuntos
Depressão/terapia , Meditação/psicologia , Empatia , Humanos , Atenção Plena
12.
Front Immunol ; 10: 2452, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681326

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by increased production of autoantibodies, which commonly target nuclear antigens, and concomitant deposition of immune complexes that cause inflammation in tissues. SLE is often associated with increased systemic expression of type I interferons, in some cases due to dysregulation in nucleic acid-sensing innate pathways. There is strong genetic evidence for a link between cytoplasmic RNA sensing pathways (RIG-I/MDA5) and SLE, both in human patients and murine models, however questions still remain regarding pathway initiation, cell types involved and downstream effects. Here we show that MAVS, an essential adaptor for RIG-I/MDA5 signaling, is necessary for all symptoms of autoimmune disease that develop spontaneously in the lupus model FcγRIIB-/- mice. This effect was independent of type I interferon signaling, TLR7 expression or STING, all three factors that have been connected to autoimmunity. Mixed bone marrow reconstitution experiments showed reduced occurrence in autoimmune germinal centers and diminished autoantibody production by MAVS-deficient B cells. Thus, MAVS plays a B cell intrinsic role in autoreactive B cell activation that is independent of its anti-viral functions and independent of elevated type I interferon expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Interações Hospedeiro-Patógeno , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Animais , Autoanticorpos/imunologia , Células da Medula Óssea/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Mutação , Receptores de IgG/deficiência , Receptor 7 Toll-Like/metabolismo
13.
Mol Cell Biol ; 39(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30988160

RESUMO

Growth factor independence 1B (GFI1B) coordinates assembly of transcriptional repressor complexes comprised of corepressors and histone-modifying enzymes to control gene expression programs governing lineage allocation in hematopoiesis. Enforced expression of GFI1B in K562 erythroleukemia cells favors erythroid over megakaryocytic differentiation, providing a platform to define molecular determinants of binary fate decisions triggered by GFI1B. We deployed proteome-wide proximity labeling to identify factors whose inclusion in GFI1B complexes depends upon GFI1B's obligate effector, lysine-specific demethylase 1 (LSD1). We show that GFI1B preferentially recruits core and putative elements of the BRAF-histone deacetylase (HDAC) (BHC) chromatin-remodeling complex (LSD1, RCOR1, HMG20A, HMG20B, HDAC1, HDAC2, PHF21A, GSE1, ZMYM2, and ZNF217) in an LSD1-dependent manner to control acquisition of erythroid traits by K562 cells. Among these elements, depletion of both HMG20A and HMG20B or of GSE1 blocks GFI1B-mediated erythroid differentiation, phenocopying impaired differentiation brought on by LSD1 depletion or disruption of GFI1B-LSD1 binding. These findings demonstrate the central role of the GFI1B-LSD1 interaction as a determinant of BHC complex recruitment to enable cell fate decisions driven by GFI1B.


Assuntos
Células Eritroides/citologia , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células COS , Diferenciação Celular , Chlorocebus aethiops , Regulação para Baixo , Células Eritroides/metabolismo , Histona Desacetilases/metabolismo , Humanos , Células K562 , Fenótipo , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica
14.
Mol Biol Cell ; 30(3): 346-356, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540534

RESUMO

A dogma of innate immunity is that neutrophils use G-protein-coupled receptors (GPCRs) for chemoattractant to chase bacteria through chemotaxis and then use phagocytic receptors coupled with tyrosine kinases to destroy opsonized bacteria via phagocytosis. Our current work showed that G-protein-coupled formyl peptide receptors (FPRs) directly mediate neutrophil phagocytosis. Mouse neutrophils lacking formyl peptide receptors (Fpr1/2-/-) are defective in the phagocytosis of Escherichia coli and the chemoattractant N-formyl-Met-Leu-Phe (fMLP)-coated beads. fMLP immobilized onto the surface of a bead interacts with FPRs, which trigger a Ca2+ response and induce actin polymerization to form a phagocytic cup for engulfment of the bead. This chemoattractant GPCR/Gi signaling works independently of phagocytic receptor/tyrosine kinase signaling to promote phagocytosis. Thus, in addition to phagocytic receptor-mediated phagocytosis, neutrophils also utilize the chemoattractant GPCR/Gi signaling to mediate phagocytosis to fight against invading bacteria.


Assuntos
Quimiotaxia , Escherichia coli/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Fagocitose , Receptores de Formil Peptídeo/metabolismo , Actinas/metabolismo , Animais , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Células HL-60 , Humanos , Imunoglobulina G/metabolismo , Camundongos , Microesferas , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Polimerização , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
PLoS Pathog ; 12(10): e1005930, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27716849

RESUMO

Both type I interferon (IFN-I) and CD40 play a significant role in various infectious diseases, including malaria and autoimmune disorders. CD40 is mostly known to function in adaptive immunity, but previous observations of elevated CD40 levels early after malaria infection of mice led us to investigate its roles in innate IFN-I responses and disease control. Using a Plasmodium yoelii nigeriensis N67 and C57BL/6 mouse model, we showed that infected CD40-/- mice had reduced STING and serum IFN-ß levels day-2 post infection, higher day-4 parasitemia, and earlier deaths. CD40 could greatly enhance STING-stimulated luciferase signals driven by the IFN-ß promoter in vitro, which was mediated by increased STING protein levels. The ability of CD40 to influence STING expression was confirmed in CD40-/- mice after malaria infection. Substitutions at CD40 TRAF binding domains significantly decreased the IFN-ß signals and STING protein level, which was likely mediated by changes in STING ubiquitination and degradation. Increased levels of CD40, STING, and ISRE driven luciferase signal in RAW Lucia were observed after phagocytosis of N67-infected red blood cells (iRBCs), stimulation with parasite DNA/RNA, or with selected TLR ligands [LPS, poly(I:C), and Pam3CSK4]. The results suggest stimulation of CD40 expression by parasite materials through TLR signaling pathways, which was further confirmed in bone marrow derived dendritic cells/macrophages (BMDCs/BMDMs) and splenic DCs from CD40-/-, TLR3-/- TLR4-/-, TRIF-/-, and MyD88-/- mice after iRBC stimulation or parasite infection. Our data connect several signaling pathways consisting of phagocytosis of iRBCs, recognition of parasite DNA/RNA (possibly GPI) by TLRs, elevated levels of CD40 and STING proteins, increased IFN-I production, and longer host survival time. This study reveals previously unrecognized CD40 function in innate IFN-I responses and protective pathways in infections with malaria strains that induce a strong IFN-I response, which may provide important information for better understanding and management of malaria.


Assuntos
Antígenos CD40/imunologia , Interações Hospedeiro-Parasita/imunologia , Interferon Tipo I/imunologia , Malária/imunologia , Proteínas de Membrana/imunologia , Animais , Western Blotting , Antígenos CD40/biossíntese , Modelos Animais de Doenças , Imunofluorescência , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium yoelii/imunologia
16.
Cell Rep ; 12(4): 661-72, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26190101

RESUMO

Invading pathogens trigger specific host responses, an understanding of which might identify genes that function in pathogen recognition and elimination. In this study, we performed trans-species expression quantitative trait locus (ts-eQTL) analysis using genotypes of the Plasmodium yoelii malaria parasite and phenotypes of mouse gene expression. We significantly linked 1,054 host genes to parasite genetic loci (LOD score ≥ 3.0). Using LOD score patterns, which produced results that differed from direct expression-level clustering, we grouped host genes that function in related pathways, allowing functional prediction of unknown genes. As a proof of principle, 14 of 15 randomly selected genes predicted to function in type I interferon (IFN-I) responses were experimentally validated using overexpression, small hairpin RNA knockdown, viral infection, and/or infection of knockout mice. This study demonstrates an effective strategy for studying gene function, establishes a functional gene database, and identifies regulators in IFN-I pathways.


Assuntos
Interações Hospedeiro-Parasita/genética , Interferon Tipo I/metabolismo , Malária/genética , Plasmodium yoelii/genética , Animais , Genoma de Protozoário , Estudo de Associação Genômica Ampla , Interferon Tipo I/genética , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium yoelii/patogenicidade , Locos de Características Quantitativas
17.
Cell ; 147(2): 436-46, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000020

RESUMO

STAT6 plays a prominent role in adaptive immunity by transducing signals from extracellular cytokines. We now show that STAT6 is required for innate immune signaling in response to virus infection. Viruses or cytoplasmic nucleic acids trigger STING (also named MITA/ERIS) to recruit STAT6 to the endoplasmic reticulum, leading to STAT6 phosphorylation on Ser(407) by TBK1 and Tyr(641), independent of JAKs. Phosphorylated STAT6 then dimerizes and translocates to the nucleus to induce specific target genes responsible for immune cell homing. Virus-induced STAT6 activation is detected in all cell-types tested, in contrast to the cell-type specific role of STAT6 in cytokine signaling, and Stat6(-/-) mice are susceptible to virus infection. Thus, STAT6 mediates immune signaling in response to both cytokines at the plasma membrane, and virus infection at the endoplasmic reticulum.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Infecções por Vírus de RNA/imunologia , Vírus de RNA , Fator de Transcrição STAT6/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT6/genética
18.
Ying Yong Sheng Tai Xue Bao ; 21(3): 770-6, 2010 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-20560337

RESUMO

Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.


Assuntos
Agricultura , Biocombustíveis , Fontes Geradoras de Energia , Sistemas de Informação Geográfica , Modelos Teóricos , Biomassa , Ecossistema , Fontes Geradoras de Energia/classificação
19.
Nat Immunol ; 10(12): 1300-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19881509

RESUMO

MAVS is critical in innate antiviral immunity as the sole adaptor for RIG-I-like helicases. MAVS regulation is essential for the prevention of excessive harmful immune responses. Here we identify PCBP2 as a negative regulator in MAVS-mediated signaling. Overexpression of PCBP2 abrogated cellular responses to viral infection, whereas knockdown of PCBP2 exerted the opposite effect. PCBP2 was induced after viral infection, and its interaction with MAVS led to proteasomal degradation of MAVS. PCBP2 recruited the HECT domain-containing E3 ligase AIP4 to polyubiquitinate and degrade MAVS. MAVS was degraded after viral infection in wild-type mouse embryonic fibroblasts but remained stable in AIP4-deficient (Itch(-/-)) mouse embryonic fibroblasts, coupled with greatly exaggerated and prolonged antiviral responses. The PCBP2-AIP4 axis defines a new signaling cascade for MAVS degradation and 'fine tuning' of antiviral innate immunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Knockout , Vírus da Doença de Newcastle/imunologia , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Vírus Sendai/imunologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Vesiculovirus/imunologia
20.
Proc Natl Acad Sci U S A ; 106(21): 8653-8, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19433799

RESUMO

We report here the identification and characterization of a protein, ERIS, an endoplasmic reticulum (ER) IFN stimulator, which is a strong type I IFN stimulator and plays a pivotal role in response to both non-self-cytosolic RNA and dsDNA. ERIS (also known as STING or MITA) resided exclusively on ER membrane. The ER retention/retrieval sequence RIR was found to be critical to retain the protein on ER membrane and to maintain its integrity. ERIS was dimerized on innate immune challenges. Coumermycin-induced ERIS dimerization led to strong and fast IFN induction, suggesting that dimerization of ERIS was critical for self-activation and subsequent downstream signaling.


Assuntos
Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Multimerização Proteica/imunologia , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...