Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Low Extrem Wounds ; : 15347346221144152, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536604

RESUMO

Objective: To analyze and compare the effect of the combination of energy and density parameters of CO2 dot matrix laser in the hyperplastic stage of pediatric burn. Materials and Methods: A total of 160 pediatric patients with hypertrophic scar after limb burn from 2017 to 2020 were randomly divided into four parameter groups (n = 40). The patients were treated with ablative fraction carbon dioxide laser, once every 10 weeks. During the interval of laser treatment, Compound Heparin Sodium and Allantoin Gel (Contractubex) was applied externally, tid, and elastic cover or elastic bandage is attached to the affected limb. Scoring based on the Vancouver Scar Scale is performed before each laser treatment, The score before the first treatment was the initial score, which was scored by two people separately, and the average score was calculated. Subsequently, the patients were treated four times and scored. The differences between each treatment and the first score of each parameter group were compared. Under the same energy and different treatment density, the scores after each treatment were compared. Under the same density and different energy, the scores after each treatment were compared. The bleeding and pigmentation of each parameter group were compared. Results: The increase of density can show the therapeutic effect earlier than the increase of energy, and 25mj energy and 10% density have better intervention effect. With the course of disease and the progress of treatment, the correlation between intervention effect and parameters tends to weaken. Comparing the number of cases with different scores between each treatment and the first time, the score in the 5% density group was lower than that in the 10% density group, but there was no significant difference between the 25mj and 17.5mj energy levels in the same density group. The intervention effect of the increase of density on scar was better than that of energy, and the increase of energy and density could aggravate the pain. Conclusion: In pediatric burn hypertrophic scars treated by CO2 dot matrix laser in exfoliation mode, the intervention effect of increasing density is better than that of energy. When setting laser treatment parameters, we should give priority to increasing density and adjust energy according to the effect of treatment and the condition of pain, bleeding and color precipitation. In this study, the best combination of parameters is 17.5mj/10%.

2.
Carbohydr Polym ; 291: 119552, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698331

RESUMO

An N-acetylcysteine functionalized chitosan oligosaccharide-palmitic acid conjugate (NAC-COS-PA) with bioadhesive and permeation promoting properties was synthesized to enhance transocular drug delivery. Flurbiprofen (FB) loaded self-assembled NAC-COS-PA nanomicelles (NAC-COS-PA-FB) were prepared and the drug loading was 7.35 ± 0.32%. Human immortalized corneal epithelial (HCE-T) cell cytotoxicity and hen's egg test-chorioallantoic membrane assays confirmed that the conjugate had good biocompatibility. The transportation efficiency of coumarin-6 (C6) loaded nanomicelles in the HCE-T cell monolayer was approximately 1.97 times higher than that of free C6. Decreased intracellular Ca2+ concentration and cell membrane potential, increased cell membrane fluidity, and reversible changes in the F-actin cytoskeleton are presumed to be responsible for the enhanced drug permeation. NAC-COS-PA exhibited strong binding capacity with mucin and rabbit eyeball. In vivo pharmacokinetics indicated that the area under the curve (AUC0-6 h) and the maximum concentration (Cmax) of NAC-COS-PA-FB were approximately 1.92 and 2.44 times that of the FB solution, respectively. NAC-COS-PA-FB demonstrated the best in vivo anti-inflammatory efficacy compared to unfunctionalized nanomicelles (COS-PA-FB) and FB solution. Consequently, NAC-COS-PA appears to be a promising bioadhesive carrier for ophthalmic delivery.


Assuntos
Quitosana , Flurbiprofeno , Acetilcisteína/química , Acetilcisteína/farmacologia , Animais , Galinhas , Quitosana/química , Córnea/metabolismo , Feminino , Flurbiprofeno/farmacocinética , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Ácido Palmítico , Tamanho da Partícula , Coelhos
3.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112180, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775252

RESUMO

Drugs that are topically applied on the eyes have low bioavailability, which has always been an important problem. In this study, maleimide functionalized, voriconazole (VCZ) loaded mixed micelles (Mal-VCZ-MM) were designed. Pluronic F127 and phospholipid were used as materials, and maleimide was used as an adhesive. The prepared Mal-VCZ-MM was nearly spherical with a particle size of 84.45 ± 1.39 nm and a zeta potential of - 20.3 ± 0.29 mV. The encapsulation efficiency of Mal-VCZ-MM was 95.33 ± 0.06%, and it had high stability with a critical micelle concentration value of 1.28 × 10-4 mg/mL. CCK-8 assay showed that its cytotoxicity was lower than that of free VCZ solution (VCZ-Sol). Both quantitative and qualitative analyses of the HCE-T cellular uptake showed that the cellular internalization of Mal-C6-MM was significantly stronger than that of C6-MM. The endocytosis pathway was macropinocytosis-mediated, cavernous-mediated, and energy-dependent. In vitro results against Candida albicans showed that the diameters of the antifungal inhibition zones of VCZ-Sol, VCZ-MM, and Mal-VCZ-MM were 15.5 ± 0.50 mm, 24.0 ± 0.71 mm, and 31.5 ± 1.12 mm, respectively. The antifungal effect of Mal-VCZ-MM was significantly higher than that of VCZ-Sol and VCZ-MM (P < 0.001). This study shows that Mal-VCZ-MM is a highly effective hydrophobic ophthalmic drug-delivery carrier that can improve the therapeutic effect of the drug.


Assuntos
Micelas , Poloxâmero , Candida albicans , Maleimidas , Fosfolipídeos , Voriconazol/farmacologia
4.
Acta Biomater ; 138: 193-207, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34757228

RESUMO

Topical eye drops still face challenges of low-drug treatment effects and frequent dosing in ophthalmic applications due to the low preocular retention rate and low transcorneal permeability. Thus, we designed and synthesized a phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer (PBA-CS-VE) for use in mucoadhesive voriconazole (VRC)-loaded nanomicelles for fungal keratitis. In vitro mucin binding and ex vivo eyeball adhesion tests show that the copolymer has strong mucoadhesion. The transportation of coumarin-6 (C6) across a monolayer of HCE-T cells and 3D cell spheroids confirm the strong corneal penetration ability of PBA-CS-VE. The mechanism of promoting corneal penetration was studied in terms of intracellular calcium-ion concentration, cell membrane potential, cell membrane fluidity, and the tight junctions of cells. The pharmacokinetics in the aqueous humor were examined to evaluate the ability of nanomicelles in promoting corneal penetration and prolonging ocular retention. VRC-loaded PBA-CS-VE nanomicelles (PBA-CS-VE-VRC) yielded a very favorable therapeutic effect on a rabbit model of fungal keratitis in vivo as compared to the free drug. Overall, the results indicate that PBA-CS-VE nanomicelles are a mucoadhesive candidate with enhanced transcorneal permeability and prolonged preocular retention for efficient delivery of topical ocular drugs. STATEMENT OF SIGNIFICANCE: Although eye drops are widely used in ocular drug delivery, the disadvantages such as short retention time and weak corneal penetrating ability still seriously affect the therapeutic effect of the drug. Therefore, the mucoadhesive carrier seems to be an interesting strategy for ocular drug delivery. Herein, a novel phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer was designed and constructed as mucoadhesive nanomicelles loaded with voriconazole for fungal keratitis. These nanomicelles were able to improve the in vitro mucin binding and to prolong the residence time of the drug on the surface of the eyeball. Moreover, the nanomicelles exhibited an enhanced drug permeability in cell monolayer models and 3D cell culture models. This work provides a promising ocular drug delivery system.


Assuntos
Quitosana , Animais , Ácidos Borônicos , Técnicas de Cultura de Células em Três Dimensões , Córnea , Sistemas de Liberação de Medicamentos , Oligossacarídeos , Coelhos , Vitamina E , Voriconazol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...