Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 29(10): 2826-2842, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37072933

RESUMO

BACKGROUND: Activation of the NLRP3 inflammasome promotes microglia to secrete inflammatory cytokines and induce pyroptosis, leading to impaired phagocytic and clearance functions of microglia in Alzheimer's disease (AD). This study found that the autophagy-associated protein p62 interacts with NLRP3, which is the rate-limiting protein of the NLRP3 inflammasome. Thus, we aimed to prove that the degradation of NLRP3 occurs through the autophagy-lysosome pathway (ALP) and also demonstrate its effects on the function of microglia and pathological changes in AD. METHODS: The 5XFAD/NLRP3-KO mouse model was established to study the effect of NLRP3 reduction on AD. Behavioral experiments were conducted to assess the cognitive function of the mice. In addition, immunohistochemistry was used to evaluate the deposition of Aß plaques and morphological changes in microglia. BV2 cells treated with lipopolysaccharide (LPS) followed by Aß1-42 oligomers were used as in vitro AD inflammation models and transfected with lentivirus to regulate the expression of the target protein. The pro-inflammatory status and function of BV2 cells were detected by flow cytometry and immunofluorescence (IF). Co-immunoprecipitation, mass spectrometry, IF, Western blot (WB), quantitative real-time PCR, and RNA-seq analysis were used to elucidate the mechanisms of molecular regulation. RESULTS: Cognitive function was improved in the 5XFAD/NLRP3-KO mouse model by reducing the pro-inflammatory response of microglia and maintaining the phagocytic and clearance function of microglia to the deposited Aß plaque. The pro-inflammatory function and pyroptosis of microglia were regulated by NLRP3 expression. Ubiquitinated NLRP3 can be recognized by p62 and degraded by ALP, slowing down the proinflammatory function and pyroptosis of microglia. The expression of autophagy pathway-related proteins such as LC3B/A, p62 was increased in the AD model in vitro. CONCLUSIONS: P62 recognizes and binds to ubiquitin-modified NLRP3. It plays a vital role in regulating the inflammatory response by participating in ALP-associated NLRP3 protein degradation, which improves cognitive function in AD by reducing the pro-inflammatory status and pyroptosis of microglia, thus maintaining its phagocytic function.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/metabolismo , Autofagia , Cognição , Inflamassomos/metabolismo , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
2.
Waste Manag ; 164: 181-190, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059042

RESUMO

A small amount of leachate with complex composition will be produced during the compressing of municipal solid waste in refuse transfer stations. In this study, the freeze-melt method, a green and efficient wastewater treatment technology, was used to treat the compressed leachate. The effects of freezing temperature, freezing duration, and ice melting method on the removal rates of contaminants were investigated. The results showed that the freeze-melt method was not selective for the removal of chemical oxygen demand (COD), total organic carbon (TOC), ammonia-nitrogen (NH3-N) and total phosphorus (TP). The removal rate of contaminants was positively correlated with freezing temperature and negatively correlated with freezing duration, and the slower the growth rate of ice, the higher the purity of ice. When the compressed leachate was frozen at -15 °C for 42 h, the removal rates of COD, TOC, NH3-N and TP were 60.00%, 58.40%, 56.89% and 55.34%, respectively. Contaminants trapped in ice were removed during the melting process, especially in the early stages of melting. The divided melting method was more beneficial than the natural melting method in removing contaminants during the initial stage of melting, which contributes to the reduction of produced water losses. This study provides a new idea for the treatment of small amounts of highly concentrated leachate generated by compression facilities distributed in various corners of the city.


Assuntos
Gelo , Poluentes Químicos da Água , Congelamento , Resíduos Sólidos , Amônia/análise , Nitrogênio/análise , Fósforo , Poluentes Químicos da Água/análise
3.
Cell Mol Biol Lett ; 28(1): 11, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739397

RESUMO

BACKGROUND: Glyphosate (GLY), as the active ingredient of the most widely used herbicide worldwide, is commonly detected in the environment and living organisms, including humans. Its toxicity and carcinogenicity in mammals remain controversial. Several studies have demonstrated the hepatotoxicity of GLY; however, the underlying cellular and molecular mechanisms are still largely unknown. METHODS: Using single-cell RNA sequencing (scRNA-seq), immunofluorescent staining, and in vivo animal studies, we analyzed the liver tissues from untreated and GLY-treated mice. RESULTS: We generated the first scRNA-seq atlas of GLY-exposed mouse liver. GLY induced varied cell composition, shared or cell-type-specific transcriptional alterations, and dysregulated cell-cell communication and thus exerted hepatotoxicity effects. The oxidative stress and inflammatory response were commonly upregulated in several cell types. We also observed activation and upregulated phagocytosis in macrophages, as well as proliferation and extracellular matrix overproduction in hepatic stellate cells. CONCLUSIONS: Our study provides a comprehensive single-cell transcriptional picture of the toxic effect of GLY in the liver, which offers novel insights into the molecular mechanisms of the GLY-associated hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Herbicidas , Humanos , Animais , Camundongos , Análise da Expressão Gênica de Célula Única , Herbicidas/toxicidade , Fígado , Doença Hepática Induzida por Substâncias e Drogas/genética , Análise de Célula Única , Transcriptoma , Mamíferos/genética , Glifosato
4.
Front Behav Neurosci ; 16: 982218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505729

RESUMO

Introduction: Despite the widespread use of the unilateral striatal 6-hydroxydopamine (6-OHDA) lesion model in mice in recent years, the stability of behavioral deficits in the 6-OHDA striatal mouse model over time is not yet clear, raising concerns about using this model to evaluate a compound's long-term therapeutic effects. Materials and methods: In the current study, mice were tested at regular intervals in the cylinder test and gait analysis beginning 3 days after 6-OHDA injection of 4 and 8 µg and lasting until 56 days post-lesion. Apomorphine-induced rotational test and rotarod test were also performed on Day 23 and 43 post-lesion, respectively. Immunohistochemistry for dopaminergic neurons stained by tyrosine hydroxylase (TH) was also performed. Results: Our results showed that both the 4 and 8 µg 6-OHDA lesion groups exhibited forelimb use asymmetry with a preference for the ipsilateral (injection) side on Day 3 and until Day 21 post-lesion, but did not show forelimb asymmetry on Day 28 to 56 post-lesion. The 8 µg 6-OHDA lesion group still exhibited forelimb asymmetry on Day 28 and 42 post-lesion, but not on Day 56. The gait analysis showed that the contralateral front and hind step cycles increased from Day 3 to 42 post-lesion and recovered on Day 56 post-lesion. In addition, our results displayed a dose-dependent reduction in TH+ cells and TH+ fibers, as well as dose-dependent apomorphine-induced rotations. In the rotarod test, the 8 µg 6-OHDA lesion group, but not the 4 µg group, decreased the latency to fall on the rotarod on Day 43 post-lesion. Conclusion: In summary, unilateral striatal 6-OHDA injections of 4 and 8 µg induced spontaneous motor impairment in mice, which partially recovered starting on Day 28 post-lesion. Forced motor deficits were observed in the 8 g 6-OHDA lesion group, which remained stable on Day 43 post-lesion. In addition, the rotarod test and apomorphine-induced rotational test can distinguish between lesions of different extents and are useful tools for the assessment of functional recovery in studies screening novel potential therapies.

5.
Genome Biol ; 23(1): 203, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163035

RESUMO

BACKGROUND: The laboratory mouse was domesticated from the wild house mouse. Understanding the genetics underlying domestication in laboratory mice, especially in the widely used classical inbred mice, is vital for studies using mouse models. However, the genetic mechanism of laboratory mouse domestication remains unknown due to lack of adequate genomic sequences of wild mice. RESULTS: We analyze the genetic relationships by whole-genome resequencing of 36 wild mice and 36 inbred strains. All classical inbred mice cluster together distinctly from wild and wild-derived inbred mice. Using nucleotide diversity analysis, Fst, and XP-CLR, we identify 339 positively selected genes that are closely associated with nervous system function. Approximately one third of these positively selected genes are highly expressed in brain tissues, and genetic mouse models of 125 genes in the positively selected genes exhibit abnormal behavioral or nervous system phenotypes. These positively selected genes show a higher ratio of differential expression between wild and classical inbred mice compared with all genes, especially in the hippocampus and frontal lobe. Using a mutant mouse model, we find that the SNP rs27900929 (T>C) in gene Astn2 significantly reduces the tameness of mice and modifies the ratio of the two Astn2 (a/b) isoforms. CONCLUSION: Our study indicates that classical inbred mice experienced high selection pressure during domestication under laboratory conditions. The analysis shows the positively selected genes are closely associated with behavior and the nervous system in mice. Tameness may be related to the Astn2 mutation and regulated by the ratio of the two Astn2 (a/b) isoforms.


Assuntos
Domesticação , Genoma , Animais , Camundongos , Nucleotídeos , Fenótipo , Seleção Genética , Sequenciamento Completo do Genoma
6.
Chemosphere ; 308(Pt 1): 136291, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36058366

RESUMO

Developing highly efficient, stable, recyclable, and application value heterogeneous catalysts in advanced oxidation processes has essential application value in the degradation of refractory pollutants. In this paper, the CoNi alloy anchored onto N-doped porous carbon (CoNi-600@NC) catalyst was prepared using bimetallic doped metal-organic frameworks as precursors. The magnetic CoNi-600@NC can activate peroxymonosulfate (PMS) to degrade sulfamethoxazole (SMX). Therefore, SMX can be removed 100% within 25 min. CoNi-600@NC/PMS has a broad pH (3-9) application range, good applicability, and repeatability. Radical quenching, quantitative and electrochemical experiments proved that the degradation of SMX was dominated by free radical (Superoxide anions) and non-free radical pathways (surface-bound radicals). Mechanistic analysis showed that the interaction between Co-Nx/pyridine N-sites and graphitized carbon with PMS induced the formation of surface-bound active species. Moreover, CoNi nanoparticles promoted the redox cycle of metals. The synergistic catalytic mechanisms between the CoNi alloy and the abundant functional groups gave CoNi-600@NC excellent catalytic properties and applicability. Using density functional theory predicted the reaction sites of SMX and proposed four degradation pathways. The toxicity of intermediates was comprehensively evaluated. In addition, a CoNi-600@NC continuous flow reactor was constructed with a daily treatment capacity of 45 L and 100% SMX removal. This study expands the application of persulfate advanced oxidation technology by synthesizing recyclable magnetic catalysts and provides new synergistic degradation mechanisms for removing refractory organics.


Assuntos
Caramujo Conus , Estruturas Metalorgânicas , Poluentes Químicos da Água , Ligas , Animais , Carbono/química , Peróxidos , Porosidade , Piridinas , Sulfametoxazol/química , Sulfametoxazol/toxicidade , Superóxidos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
7.
Elife ; 112022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834310

RESUMO

The hallmark event of the canonical transforming growth factor ß (TGFß) family signaling is the assembly of the Smad-complex, consisting of the common Smad, Smad4, and phosphorylated receptor-regulated Smads. How the Smad-complex is assembled and regulated is still unclear. Here, we report that active Arl15, an Arf-like small G protein, specifically binds to the MH2 domain of Smad4 and colocalizes with Smad4 at the endolysosome. The binding relieves the autoinhibition of Smad4, which is imposed by the intramolecular interaction between its MH1 and MH2 domains. Activated Smad4 subsequently interacts with phosphorylated receptor-regulated Smads, forming the Smad-complex. Our observations suggest that Smad4 functions as an effector and a GTPase activating protein (GAP) of Arl15. Assembly of the Smad-complex enhances the GAP activity of Smad4 toward Arl15, therefore dissociating Arl15 before the nuclear translocation of the Smad-complex. Our data further demonstrate that Arl15 positively regulates the TGFß family signaling.


Assuntos
Transativadores , Fator de Crescimento Transformador beta , Transdução de Sinais , Proteína Smad3/metabolismo , Proteína Smad4/metabolismo , Transativadores/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
Animal Model Exp Med ; 5(3): 274-280, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748035

RESUMO

OBJECT: Early-life neglect has irreversible emotional effects on the central nervous system. In this work, we aimed to elucidate distinct functional neural changes in medial prefrontal cortex (mPFC) of model rats. METHODS: Maternal separation with early weaning was used as a rat model of early-life neglect. The excitation of glutamatergic and GABAergic neurons in rat mPFC was recorded and analyzed by whole-cell patch clamp. RESULTS: Glutamatergic and GABAergic neurons of mPFC were distinguished by typical electrophysiological properties. The excitation of mPFC glutamatergic neurons was significantly increased in male groups, while the excitation of mPFC GABAergic neurons was significant in both female and male groups, but mainly in terms of rest membrane potential and amplitude, respectively. CONCLUSIONS: Glutamatergic and GABAergic neurons in medial prefrontal cortex showed different excitability changes in a rat model of early-life neglect, which can contribute to distinct mechanisms for emotional and cognitive manifestations.


Assuntos
Privação Materna , Células Piramidais , Animais , Feminino , Neurônios GABAérgicos/fisiologia , Masculino , Potenciais da Membrana , Córtex Pré-Frontal , Ratos
9.
Bioresour Technol ; 352: 127098, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367605

RESUMO

The effective degradation of Sulfamethoxazole (SMX) is of great importance to alleviate environmental pollution. In this study, the degradation capacity of an ordinary sequencing batch activated sludge system (SBR) and montmorillonite (MMT) system was compared for their ability to degrade different concentrations of SMX. Compared with SBR system, the MMT system exhibited higher stability and degradation capacity. The changes in the composition of tightly bound extracellular polymeric substances (TB-EPS) were likely key to the observed stability of the system. High concentrations of SMX inhibited the degradation performance of SBR. MMT-supplemented reduced the generation of antibiotic resistance genes (ARGs). Thauera is a gene that is able to degrade SMX, and its abundance in MMT system reached 7.84%. As potential hosts of ARGs, the proportions of Paenarthrobacter and Caldilineacea were significantly correlated with sulfonamide resistance genes (sul1 and sul2). Overall, MMT-supplemented system was found to be a favorable method of treating antibiotic.


Assuntos
Microbiota , Águas Residuárias , Antibacterianos/farmacologia , Bentonita , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Sulfametoxazol/farmacologia
10.
ACS Appl Mater Interfaces ; 14(13): 15324-15336, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315652

RESUMO

Metal sulfides are promising anodes for potassium-ion batteries (PIBs) due to their high theoretical capacity and abundant active sites; however, their intrinsic low conductivity and poor cycling stability hampered their practical applications. Given this, the rational design of hybrid structures with high stability and fast charge transfer is a critical approach. Herein, CoS2/ZnS@rGO hybrid nanocomposites were demonstrated with stable cubic phases. The synergistic effect of the obtained bimetallic sulfide nanoparticles and highly conductive 2D rGO nanosheets facilitated excellent long-term cyclability for potassium ion storage. Such hybrid nanocomposites delivered remarkable ultrastable cycling performances in PIBs of 159, 106, and 80 mA h g-1 at 1, 1.5, and 2 A g-1 after 1800, 2100, and 3000 cycles, respectively. Moreover, the full-cell configuration with a perylene tetracarboxylic dianhydride organic cathode (CoS2/ZnS@rGO∥PTCDA) exhibited a better electrochemical performance. Besides, when the CoS2/ZnS@rGO nanocomposites were applied as an anode for sodium-ion batteries, the electrode demonstrated a reversible charge capacity of 259 mA h g-1 after 600 cycles at 2 A g-1. In situ X-ray diffraction and ex situ high-resolution transmission electron microscopy characterizations further confirmed the conversion reactions of CoS2/ZnS during insertion/desertion processes. Our synthesis strategy is also a general route to other bimetallic sulfide hybrid nanocomposites. This strategy opens up a new roadmap for exploring hybrid nanocomposites with feasible phase engineering for achieving excellent electrochemical performances in energy storage applications.

11.
Chemosphere ; 286(Pt 3): 131972, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426278

RESUMO

Bifunctional cathodes have attracted widespread interest in the heterogeneous electro-Fenton (hetero-EF) process. In this study, the bifunctional composite cathode co-modified with N-doped carbon CoFe alloy (CoFe@NC) and carbon nanotubes (CNTs), designated as CoFe@NC-CNTs/CNTs/NF, integrating hydrogen peroxide (H2O2) synthesis and catalysis, was prepared for efficient degradation of atrazine (ATZ) under the near-neutral condition (pHi = 5.9). The morphology properties, crystal structure, microstructures, and elemental composition were determined. The influences of current density, initial pH value, different anions, and water matrix on the removal of ATZ were systematically studied. In the hetero-EF process, high removal efficiencies of ATZ can be achieved over the broad pH range (3-9) under the current density of 4.5 mA cm-2. The removal efficiency of ATZ remained at 90.2 ± 0.3% after 8 cycles under the near-neutral condition (pHi = 5.9). Radical quenching tests and EPR spectra have verified that both free radical pathways such as superoxide anion (O2·-) and hydroxyl radical (·OH) and non-radical pathway such as singlet oxygen (1O2) contributed to ATZ removal. The degradation pathways and catalytic mechanism were proposed. Toxicity evaluation and Escherichia coli growth test showed that the toxicity gradually decreased during the degradation process. This work provided a new thought for developing an efficient and stable bifunctional cathode to construct an in-situ hetero-EF system for pollutants removal over the wide pH range.


Assuntos
Atrazina , Nanotubos de Carbono , Poluentes Químicos da Água , Eletrodos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Níquel , Oxirredução , Poluentes Químicos da Água/análise
12.
Small ; 18(5): e2104363, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34825476

RESUMO

Potassium-ion batteries (PIBs) are deemed as one of the most promising energy storage systems due to their high energy density and low cost. However, their commercial application is far away from satisfactory because of limited suitable electrode materials. Herein, core-shell structured WSe2 @N-doped C nanotubes are rationally designed and synthesized via selenizing WO3 @ polypyrrole for the first time. The large interlayer spacing of WSe2 can facilitate the intercalation/deintercalation of K+ . Meanwhile, the core-shell structured nanotube provides favorable interior void space to accommodate the volume expansion of WSe2 during cycling. Thus, the obtained electrode exhibits superb electrochemical performance with a high capacity of 301.7 mAh g-1 at 100 mA g-1 over 120 cycles, and 122.1 mAh g-1 can remain at 500 mA g-1 even after 1300 cycles. Ex-situ X-ray diffraction analysis reveals the K-ion storage mechanism of WSe2 @N-doped C includes intercalation and conversion reaction. Density function theory (DFT) calculation demonstrates the reasonable diffusion pathway of K+ . In addition, the obtained WSe2 @N-doped C nanotubes have been used as anode material for lithium-ion batteries, which also show good rate performance and high cycle stability. Therefore, this work offers a new methodology for the ration design of new structure electrode materials with long cycle stability.

13.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614124

RESUMO

The complicated interactions between genetic background, environment and lifestyle factors make it difficult to study the genetic basis of complex phenotypes, such as cognition and anxiety levels, in humans. However, environmental and other factors can be tightly controlled in mouse studies. The Collaborative Cross (CC) is a mouse genetic reference population whose common genetic and phenotypic diversity is on par with that of humans. Therefore, we leveraged the power of the CC to assess 52 behavioral measures associated with locomotor activity, anxiety level, learning and memory. This is the first application of the CC in novel object recognition tests, Morris water maze tasks, and fear conditioning tests. We found substantial continuous behavioral variations across the CC strains tested, and mapped six quantitative trait loci (QTLs) which influenced these traits, defining candidate genetic variants underlying these QTLs. Overall, our findings highlight the potential of the CC population in behavioral genetic research, while the identified genomic loci and genes driving the variation of relevant behavioral traits provide a foundation for further studies.


Assuntos
Genômica , Locos de Características Quantitativas , Humanos , Camundongos , Animais , Mapeamento Cromossômico , Fenótipo , Genética Populacional , Cruzamentos Genéticos
14.
Signal Transduct Target Ther ; 6(1): 337, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489403

RESUMO

SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.


Assuntos
Membrana Basal/metabolismo , Barreira Hematoencefálica/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Junções Íntimas/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Membrana Basal/patologia , Membrana Basal/virologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , COVID-19/genética , COVID-19/patologia , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , Junções Íntimas/genética , Junções Íntimas/patologia , Junções Íntimas/virologia , Células Vero
15.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34533190

RESUMO

How Golgi glycosyltransferases and glycosidases (hereafter glycosyltransferases) localize to the Golgi is still unclear. Here, we first investigated the post-Golgi trafficking of glycosyltransferases. We found that glycosyltransferases can escape the Golgi to the plasma membrane, where they are subsequently endocytosed to the endolysosome. Post-Golgi glycosyltransferases are probably degraded by ectodomain shedding. We discovered that most glycosyltransferases are not retrieved from post-Golgi sites, indicating that retention rather than retrieval is the primary mechanism for their Golgi localization. We therefore used the Golgi residence time to study Golgi retention of glycosyltransferases quantitatively and systematically. Quantitative analysis of chimeras of ST6GAL1 and either transferrin receptor or tumor necrosis factor α revealed the contributions of three regions of ST6GAL1, namely the N-terminal cytosolic tail, the transmembrane domain and the ectodomain, to Golgi retention. We found that each of the three regions is sufficient for Golgi retention in an additive manner. N-terminal cytosolic tail length negatively affects the Golgi retention of ST6GAL1, similar to effects observed for the transmembrane domain. Therefore, the long N-terminal cytosolic tail and transmembrane domain could act as Golgi export signals for transmembrane secretory cargos. This article has an associated First Person interview with the first author of the paper.


Assuntos
Glicosiltransferases , Complexo de Golgi , Transporte Biológico , Membrana Celular/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Humanos , Lisossomos/metabolismo
16.
Sci Total Environ ; 793: 148492, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174611

RESUMO

In this paper, nanoscale Cu2O particles was successfully anchored at defect sites of carbon nanotubes (CNTs), which doped on three-dimensional copper foam (CF) electrode (Cu2O@CNTs/CF). The compound as cathode was synthesized via dip-coating and rapid electrodeposition followed by annealing procedure, and conducted in heterogeneous electro-Fenton (EF) system. The Cu2O@CNTs/CF composites electrode enabled activate O2 to generate H2O2 in situ and further Cu0/Cu2O synergistic catalysis to produce reactive oxygen species for a broad pH-range via the heterogeneous EF process. Cu0 on the surface of CF also contributed to the reduction of Cu2+ to Cu+, thereby enhancing the stability of the electrode. The effects of critical parameters such as precursor-ligand dosage, the initial pH value, initial pollutant concentration and current density on the degradation of the antibiotic sulfamethoxazole (SMX) were investigated. The as-obtained electrode performed both effective catalytic activity and good reusability. Almost 100% removal rate was reached within 75 min over a broad pH range (3 to 11) during the heterogeneous EF process, with the current density of 12 mA cm-2 and the removal efficiency of SMX decreased by only 9.0% after 8 recycle runs. Furthermore, quenching experiments indicated that hydroxyl radicals (·OH) were main species responsible for the SMX oxidation. In addition, the possible degradation pathways of SMX were proposed, which were based on nine identified intermediates. The comprehensive work is elucidated to accelerate the development of the in-situ production of H2O2 during the heterogeneous EF system and provide new insights to achieve high-efficiency degradation of pollutants via copper-based catalytic materials.


Assuntos
Nanopartículas , Nanotubos de Carbono , Poluentes Químicos da Água , Cobre , Eletrodos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Sulfametoxazol , Poluentes Químicos da Água/análise
17.
J Colloid Interface Sci ; 602: 187-196, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119757

RESUMO

Emulsions and foams were constructed by using surfactant particles as stabilizers. Bis(2-ethylhexyl) phosphate, abbreviated as HDEHP, was used as both an oil in neutral form and an anionic surfactant in deprotonated form, DEHP-. In the system of HDEHP/H2O, upon adding NaOH, a portion of HDEHP was deprotonated to form DEHP- as stabilizers of O/W emulsions. After introducing some certain metal ions, the O/W emulsions were transformed to W/O Pickering emulsions due to the generation of insoluble particles by DEHP- and metal ions. In addition, DEHP- could also combine with some metal ions to produce particles absorbed at air/water interface, forming ultrastable foams. Accompanied with the formation of Pickering emulsions and foams, the extraction of metal ions from water could be realized with high removal efficiency. The extractant, HDEHP, could be effectively recycled through convenient demulsification of Pickering emulsions or destruction of foams. This work provides new ideas for the construction of particle-stabilized dispersion systems and proposes methods with potential applications in industrial wastewater treatments.


Assuntos
Tensoativos , Água , Aerossóis , Emulsões , Tamanho da Partícula
18.
Nanoscale ; 13(23): 10385-10392, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34002174

RESUMO

Transition metal selenides (TMSs) are suitable for SIBs and PIBs owing to their satisfactory theoretical capacity and superior electrical conductivity. However, the large radius of Na+/K+ easily leads to sluggish kinetics and poor conductivity, which hinder the development of SIBs and PIBs. Structure design is an effective method to solve these obstacles. In this study, Co2+ ions combined with glycerol molecules to form self-assembled nanospheres at first, and then they were in situ converted into CoSe2 nanoparticles embedded in a carbon matrix during the selenization process. This structure has three-dimensional ion diffusion channels that can effectively hamper the aggregation of metal compound nanoparticles. Meanwhile, the CoSe2/C of the yolk-shell structure and a large number of pores help alleviate volume expansion and facilitate electrolyte wettability. These structural advantages of CoSe2/C endow it with remarkable electrochemical performances for full/half SIBs and full/half PIBs. The obtained CoSe2/C exhibits superior stability and excellent performance (312.1 mA h g-1 at 4 A g-1 after 1600 cycles) for SIBs. When it is used as an anode material for PIBs, 369.2 mA h g-1 can be retained after 200 cycles at 50 mA g-1 and 248.1 mA h g-1 can be retained after 200 cycles at 500 mA g-1; in addition, CoSe2/C also shows superior rate capacity (186.4 mA h g-1 at 1000 mA g-1). A series of ex situ XRD measurements were adapted to explore the possible conversion mechanism of CoSe2/C as the anode for PIBs. It is worth noting that the full-cell of CoSe2/C//Na3V2(PO4)3@rGO for SIBs and the full-cell of CoSe2/C//PTCDA-450 for PIBs were successfully assembled. The relationship between the structure and performance of CoSe2/C was investigated through density functional theory (DFT).

19.
Heliyon ; 7(2): e06302, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33665452

RESUMO

Woodchuck Hepatitis Virus Post-transcriptional Regulatory Element (WPRE) is thought to enhance transgene expression of target genes delivered by adeno-associated viral (AAV) vectors. This study assessed the protein expression of α-synuclein, phosphorylated α-synuclein at Serine 129, extent of nigrostriatal degeneration as well as subsequent behavioral deficits induced by unilateral intranigral stereotactic injection in male adult C57BL/6J mice of an AAV2/9 expressing A53T human α-synuclein under the control of the synapsin promoter in presence or absence of the WPRE. The presence of WPRE enabled to achieve greater nigrostriatal degeneration and synucleinopathy which was concomitant with worsened forelimb use asymmetry. This work refines a mouse Parkinson's disease model in which anatomo-pathology is related to behavioral deficits.

20.
Angew Chem Int Ed Engl ; 60(28): 15381-15389, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33739572

RESUMO

For advanced anode materials involving alloy/de-alloy chemistry for potassium ion batteries (PIBs), two-dimensional (2D) bismuth subcarbonate (BCO) nanosheets that possess high theoretical capacity of 631 mAh g-1 are proposed. The large lattice spacing of 0.683 nm along b axis facilitate insertion of K+ ion to boost high-capacity delivery of ca. 610 mAh g-1 , and the in situ nano-crystallization well ease volume changes of the integrated particle and shorten ion diffusion path during potassiation/depotassiation. After coupling with a concentrated KFSI-G2 electrolyte, the robust and efficient SEI built from enhanced participation of FSI- synergistically endow structural stability of the flower-like BCO, and enable a prolonged cycling performance with capacity of ca. 300 mAh g-1 at 0.2 A g-1 for 1500 cycles, achieving an ultralow decay rate of 0.007 %. Mechanistic investigations probe the electrochemistry involving alloy/de-alloy and phase transition of the electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...