Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(2)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247835

RESUMO

Human-induced pluripotent stem cells (hiPSCs) have shown great potential for human health, but their growth and properties have been significantly limited by the traditional monolayer (2D) cell culture method for more than 15 years. Three-dimensional (3D) culture technology has demonstrated tremendous advantages over 2D. In particular, the 3D PGmatrix hiPSC derived from a peptide hydrogel offers a breakthrough pathway for the maintenance and expansion of physiologically relevant hiPSC 3D colonies (spheroids). In this study, the impact of 3D culture conditions in PGmatrix hiPSC on cell performance, integrity, and secretome profiles was determined across two commonly used hiPSC cell lines derived from fibroblast cells (hiPSC-F) and peripheral blood mononuclear cells (hiPSC-P) in the two most popular hiPSC culture media (mTeSR1 and essential eight (E8)). The 3D culture conditions varied in hydrogel strength, 3D embedded matrix, and 3D suspension matrix. The results showed that hiPSCs cultured in 3D PGmatrix hiPSC demonstrated the ability to maintain a consistently high cell viability that was above 95% across all the 3D conditions with cell expansion rates of 10-20-fold, depending on the 3D conditions and cell lines. The RT-qPCR analysis suggested that pluripotent gene markers are stable and not significantly affected by the cell lines or 3D PGmatrix conditions tested in this study. Mass spectrometry-based analysis of secretome from hiPSCs cultured in 3D PGmatrix hiPSC revealed a significantly higher quantity of unique proteins, including extracellular vesicle (EV)-related proteins and growth factors, compared to those in the 2D culture. Moreover, this is the first evidence to identify that hiPSCs in a medium with a rich supplement (i.e., mTeSR1) released more growth-regulating factors, while in a medium with fewer supplements (i.e., E8) hiPSCs secreted more survival growth factors and extracellular proteins. These findings offer insights into how these differences may impact hiPSC behavior, and they deepen our understanding of how hiPSCs respond to 3D culture conditions, aiding the optimization of hiPSC properties in translational biomedical research toward clinical applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Hidrogéis/farmacologia , Leucócitos Mononucleares , Secretoma , Peptídeos/farmacologia
2.
Foods ; 12(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37509805

RESUMO

Cell-cultured protein technology has become increasingly attractive due to its sustainability and climate benefits. The aim of this study is to determine the nutritional quality of the human-induced pluripotent stem cell (hiPSC)-cultured proteins in an advanced 3D peptide hydrogel system for the highly efficient production of cell-cultured proteins. Our previous study demonstrated a PGmatrix peptide hydrogel for the 3D embedded culture of long-term hiPSC maintenance and expansion (PGmatrix-hiPSC (PG-3D)), which showed significantly superior pluripotency when compared with traditional 2D cell culture on Matrigel and/or Vitronectin and other existing 3D scaffolding systems such as Polyethylene glycol (PEG)-based hydrogels. In this study, we designed a PGmatrix 3D suspension (PG-3DSUSP) system from the PG-3D embedded system that allows scaling up a hiPSC 3D culture volume by 20 times (e.g., from 0.5 mL to 10 mL). The results indicated that the PG-3DSUSP was a competitive system compared to the well-established PG-3D embedded method in terms of cell growth performance and cell pluripotency. hiPSCs cultured in PG-3DSUSP consistently presented a 15-20-fold increase in growth and a 95-99% increase in viability across multiple passages with spheroids with a size range of 30-50 µm. The expression of pluripotency-related genes, including NANOG, OCT4, hTERT, REX1, and UTF1, in PG-3DSUSP-cultured hiPSCs was similar to or higher than that observed in a PG-3D system, suggesting continuous pluripotent maintenance. The nutritional value of the hiPSC-generated proteins from the PG-3DSUSP system was further evaluated for amino acid composition and in vitro protein digestibility. The amino acid composition of the hiPSC-generated proteins demonstrated a significantly higher essential amino acid content (39.0%) than human skeletal muscle protein (31.8%). In vitro protein digestibility of hiPSC-generated proteins was significantly higher (78.0 ± 0.7%) than that of the commercial beef protein isolate (75.7 ± 0.6%). Taken together, this is the first study to report an advanced PG-3DSUSP culture system to produce highly efficient hiPSC-generated proteins that possess more essential amino acids and better digestibility. The hiPSC-generated proteins with superior nutrition quality may be of particular significance as novel alternative proteins in food engineering and industries for future food, beverage, and supplement applications.

3.
Eur J Med Chem ; 244: 114830, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228414

RESUMO

Protein N-terminal methylation catalyzed by N-terminal methyltransferase 1 (NTMT1) is an emerging methylation present in eukaryotes, playing important regulatory roles in various biological and cellular processes. Although dysregulation of NTMT1 has been linked to many diseases such as colorectal cancer, their molecular and cellular mechanisms remain elusive due to inaccessibility to an effective cellular probe. Here we report the design, synthesis, and characterization of the first-in-class NTMT1 degraders based on proteolysis-targeting chimera (PROTAC) strategy. Through a brief structure-activity relationship (SAR) study of linker length, a cell permeable degrader 1 involving a von Hippel-Lindau (VHL) E3 ligase ligand was developed and demonstrated to reduce NTMT1 protein levels effectively and selectively in time- and dose-dependent manners in colorectal carcinoma cell lines HCT116 and HT29. Degrader 1 displayed DC50 = 7.53 µM and Dmax > 90% in HCT116 (cellular IC50 > 100 µM for its parent inhibitor DC541). While degrader 1 had marginal cytotoxicity, it displayed anti-proliferative activity in 2D and 3D culture environment, resulting from cell cycle arrested at G0/G1 phase in HCT116. Label-free global proteomic analysis revealed that degrader 1 induced overexpression of calreticulin (CALR), an immunogenic cell death (ICD) signal protein that is known to elicit antitumor immune response and clinically linked to a high survival rate of patients with colorectal cancer upon its upregulation. Collectively, degrader 1 offers the first selective cellular probe for NTMT1 exploration and a new drug discovery modality for NTMT1-related oncology and diseases.


Assuntos
Neoplasias Colorretais , Proteômica , Humanos , Proteólise , Ligantes , Metiltransferases , Desenho de Fármacos , Linhagem Celular Tumoral
4.
Front Cell Dev Biol ; 10: 890574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693947

RESUMO

Telomerase activity is essential for the self-renewal and potential of embryonic, induced pluripotent, and cancer stem cells, as well as a few somatic stem cells, such as human urine-derived stem cells (USCs). However, it remains unclear how telomerase activity affects the regeneration potential of somatic stem cells. The objective of this study was to determine the regenerative significance of telomerase activity, particularly to retain cell surface marker expression, multipotent differentiation capability, chromosomal stability, and in vivo tumorigenic transformation, in each clonal population of human primary USCs. In total, 117 USC specimens from 10 healthy male adults (25-57 years of age) were obtained. Polymerase chain reaction amplification of a telomeric repeat was used to detect USCs with positive telomerase activity (USCsTA+). A total of 80 USCsTA+ (70.2%) were identified from 117 USC clones, but they were not detected in the paired normal bladder smooth muscle cell and bone marrow stromal cell specimens. In the 20-40 years age group, approximately 75% of USC clones displayed positive telomerase activity, whereas in the 50 years age group, 59.2% of the USC clones expressed positive telomerase activity. USCsTA+ extended to passage 16, underwent 62.0 ± 4.8 population doublings, produced more cells, and were superior for osteogenic, myogenic, and uroepithelial differentiation compared to USCsTA-. Importantly, USCs displayed normal chromosome and no oncological transformation after being implanted in vivo. Overall, as a safe cell source, telomerase-positive USCs have a robust regenerative potential in cell proliferation and multipotent differentiation capacity.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37051051

RESUMO

Purpose of Review: Cell and tissue products do not just reflect their present conditions; they are the culmination of all they have encountered over time. Currently, routine cell culture practices subject cell and tissue products to highly variable and non-physiologic conditions. This article defines five cytocentric principles that place the conditions for cells at the core of what we do for better reproducibility in Regenerative Medicine. Recent Findings: There is a rising awareness of the cell environment as a neglected, but critical variable. Recent publications have called for controlling culture conditions for better, more reproducible cell products. Summary: Every industry has basic quality principles for reproducibility. Cytocentric principles focus on the fundamental needs of cells: protection from contamination, physiologic simulation, and full-time conditions for cultures that are optimal, individualized, and dynamic. Here, we outline the physiologic needs, the technologies, the education, and the regulatory support for the cytocentric principles in regenerative medicine.

7.
NPJ Sci Food ; 5(1): 14, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075054

RESUMO

In vitro cell culture models on monolayer surfaces (2D) have been widely adapted for identification of chemopreventive food compounds and food safety evaluation. However, the low correlation between 2D models and in vivo animal models has always been a concern; this gap is mainly caused by the lack of a three-dimensional (3D) extracellular microenvironment. In 2D models, cell behaviors and functionalities are altered, resulting in varied responses to external conditions (i.e., antioxidants) and hence leading to low predictability. Peptide hydrogel 3D scaffolding technologies, such as PGmatrix for cell culture, have been recently reported to grow organoid-like spheroids physiologically mimicking the 3D microenvironment that can be used as an in vitro 3D model for investigating cell activities, which is anticipated to improve the prediction rate. Thus, this review focuses on advances in 3D peptide hydrogels aiming to introduce 3D cell culture tools as in vitro 3D models for cancer-related research regarding food safety and nutraceuticals.

8.
Adv Wound Care (New Rochelle) ; 10(4): 191-203, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32716728

RESUMO

Objective: One of the leading causes of death following traumatic injury is exsanguination. Biological material-based hemostatic agents such as fibrin, thrombin, and albumin have a high risk for causing infection. Synthetic peptide-based hemostatic agents offer an attractive alternative. The objective of this study is to explore the potential of h9e peptide as an effective hemostatic agent in both in vitro and in vivo models. Approach:In vitro blood coagulation kinetics in the presence of h9e peptide was determined as a function of gelation time using a dynamic rheometer. In vivo hemostatic effects were studied using the Wistar rat model. Results were compared to those of the commercial hemostatic product Celox™, a chitosan-based product. Adhesion of h9e peptide was evaluated using the platelet adhesion test. Biocompatibility of h9e peptide was studied in vivo using a mouse model. Results: After h9e peptide solution was mixed with blood, gelation started immediately, increased rapidly with time, and reached more than 100 Pa within 3 s. Blood coagulation strength increased as h9e peptide wt% concentration increased. In the rat model, h9e peptide solution at 5% weight concentration significantly reduced both bleeding time and blood loss, outperforming Celox. Preliminary pathological studies indicate that h9e peptide solution is biocompatible and did not have negative effects when injected subcutaneously in a mouse model. Innovation: For the first time, h9e peptide was found to have highly efficient hemostatic effects by forming nanoweb-like structures, which act as a preliminary thrombus and a surface to arrest bleeding 82% faster compared to the commercial hemostatic agent Celox. Conclusion: This study demonstrates that h9e peptide is a promising hemostatic biomaterial, not only because of its greater hemostatic effect than commercial product Celox but also because of its excellent biocompatibility based on the in vivo mouse model study.


Assuntos
Materiais Biocompatíveis/farmacologia , Hemorragia/tratamento farmacológico , Hemostasia/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Tempo de Sangramento , Coagulação Sanguínea/efeitos dos fármacos , Quitosana/farmacologia , Feminino , Fibrina/farmacologia , Masculino , Camundongos , Oligopeptídeos/síntese química , Oligopeptídeos/química , Ratos , Ratos Wistar , Trombina/farmacologia
9.
Int J Biol Macromol ; 149: 609-616, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006578

RESUMO

Amyloid-like fibrils from food proteins possess unique functional properties for food and many other uses. This study reports the effect of hydrolytic heating (pH 2.0, 85 °C, 0-24 h) and incubation times (0-7 days) on the formation and physicochemical properties of amyloid fibrils based on soy protein isolates (SPI). The SPI hydrolysates and fibrils were characterized through AFM, Thioflavin T (ThT) fluorescence, SDS-PAGE, FTIR, solubility, particle size, and DSC. Stable amyloid-like protein fibrils were formed with 8-10 h of hydrolytic heating at 85 °C followed by 3 days of incubation at room temperature, as observed under AFM and confirmed with ThT assay. The fibrils contained significantly higher amounts of regular secondary structures than SPI. Incubation of the hydrolysates led to a slight increase of average particle sizes. Protein solubility near the isoelectric point (approximately pH 4.8) increased with longer hydrolytic heating (0-24 h). The hydrolysates and fibrils exhibited better gelling properties than the SPI. The DSC results revealed that hydrolysates from longer hydrolytic heating times (12 and 24 h) possessed stronger aggregation potential during heat treatment. This study provides useful information to manipulate the formation of protein fibrils and will benefit future research to explore their potential applications.


Assuntos
Amiloide/química , Proteínas de Soja/química , Benzotiazóis , Géis , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Tamanho da Partícula , Hidrolisados de Proteína , Estrutura Secundária de Proteína , Reologia , Solubilidade
10.
Amino Acids ; 49(12): 2015-2021, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28603803

RESUMO

Previously, it has been reported that a novel PepGel (h9e peptide) can be triggered into a solid physical hydrogel by the addition of selected ions and proteins for various biomedical applications. Moreover, PepGel displays shear-thinning and repeatedly reversible sol-gel transfer properties that enable it to be easily transferred via an injector. In this study, PepGel is proposed as a carrier for controlled releases of bovine serum albumin (BSA)-bound or -linked drugs. BSA-linked cisplatin (BSA-CP) is used as a model drug in this study and plays two roles: as a trigger of hydrogel and as a target drug for controlled release. Results of fluorescence instrument show that PepGel significantly quenches the fluorescence of Trp in the hydrophobic subdomain of BSA, indicating a strong interaction. Images of TEM and fluorescence confocal microscopy indicate that BSA-CP is dispersed in the PepGel fibers and at the same time enhances the fiber aggregation. Through UV instrument, it is found that PepGel can effectively inhibit the diffusion of BSA-CP even at concentrations below 0.3 wt% and that the rate of BSA-CP release could be controlled by adjusting the concentration of PepGel. Cell culture studies on the performance of the PepGel are carried out using HeLa cells, and the cell viability is observed to be consistent with the data of drug release. The results showed that PepGel nanofiber scaffolds could potentially be used as an effective carrier for controlled releases of BSA-bound or -linked drugs.


Assuntos
Cisplatino/administração & dosagem , Preparações de Ação Retardada , Hidrogel de Polietilenoglicol-Dimetacrilato , Nanofibras/química , Peptídeos/química , Soroalbumina Bovina/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Cisplatino/farmacologia , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Difusão , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Células HeLa , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Pletismografia , Soroalbumina Bovina/química
11.
ACS Omega ; 2(11): 7996-8004, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457350

RESUMO

The aim of this study was to improve water resistance of camelina protein (CP) for wood adhesives with depolymerized lignin. Kraft lignin was depolymerized by H2O2-induced oxidation in the presence of ultrasound (US) irradiation to reduce lignin's particle size and thermal stability and increase the hydroxyl group. Coupling with depolymerized lignin camelina protein exhibited increased hydrophobicity. Fluorescence spectroscopy analysis revealed that the oxidation treatment of lignin further stimulated the hydrophobization effect of the protein-lignin copolymer due to the increased reactivity of depolymerized lignin to camelina protein. Accordingly, the water resistance of CP-lignin adhesives was significantly improved. When copolymerized with US-induced oxidized lignin, the camelina protein had increased wet shear adhesion strength from 0.28 to 1.43 MPa, with wood panels passing the three-cycle water-soaking test. The CP resin, with depolymerized lignin as an economical, green, and bio-based hydrophobic enhancer, provided an alternative to the petroleum-based and other edible protein-based adhesives, such as soy protein.

12.
Carbohydr Polym ; 152: 747-754, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-27516326

RESUMO

Film-forming properties of camelina gum (CG) were evaluated, including film appearance and morphological, mechanical, water/light barrier, and thermal properties. With 4% nanoclay, tensile strength of film increased from 43.2MPa to 54.6MPa without change elongation property. The formation of physically cross-linked networks in the film increased interfacial affinity between the CG matrix and intercalated nanoclay, as proved by FTIR and X-ray diffraction (XRD) data, which contributed to the mechanical strength of film. The increased nanoclay level (6%-10%) resulted in limited mechanical strength improvement due to poor dispersion and the appearance of agglomerates of nanoclay in the film matrix, as shown in morphological study. The compact structure of CG/nanoclay film could reduce the free volume of film matrix and obstruct the diffusion of water, thereby decreasing the water vapor permeability. The ultraviolet (UV) light transmittance of CG film decreased by 40% with 10% nanoclay.


Assuntos
Silicatos de Alumínio/química , Camellia/química , Glicerol/química , Membranas Artificiais , Gomas Vegetais/química , Resistência à Tração , Argila
13.
ACS Appl Mater Interfaces ; 8(14): 9200-10, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27010675

RESUMO

Mesoporous hybrids of V2O5 nanoparticles anchored on reduced graphene oxide (rGO) have been synthesized by slow hydrolysis of vanadium oxytriisopropoxide using a two-step solvothermal method followed by vacuum annealing. The hybrid material possesses a hierarchical structure with 20-30 nm V2O5 nanoparticles uniformly grown on rGO nanosheets, leading to a high surface area with mesoscale porosity. Such hybrid materials present significantly improved electronic conductivity and fast electrolyte ion diffusion, which synergistically enhance the electrical energy storage performance. Symmetrical electrochemical capacitors with two rGO-V2O5 hybrid electrodes show excellent cycling stability, good rate capability, and a high specific capacitance up to ∼466 F g(-1) (regarding the total mass of V2O5) in a neutral aqueous electrolyte (1.0 M Na2SO4). When used as the cathode in lithium-ion batteries, the rGO-V2O5 hybrid demonstrates excellent cycling stability and power capability, able to deliver a specific capacity of 295, 220, and 132 mAh g(-1) (regarding the mass of V2O5) at a rate of C/9, 1C, and 10C, respectively. The value at C/9 rate matches the full theoretical capacity of V2O5 for reversible 2 Li(+) insertion/extraction between 4.0 and 2.0 V (vs Li/Li(+)). It retains ∼83% of the discharge capacity after 150 cycles at 1C rate, with only 0.12% decrease per cycle. The enhanced performance in electrical energy storage reveals the effectiveness of rGO as the structure template and more conductive electron pathway in the hybrid material to overcome the intrinsic limits of single-phase V2O5 materials.

14.
JAMA Otolaryngol Head Neck Surg ; 141(12): 1133-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26540318

RESUMO

IMPORTANCE: Ficlatuzumab can be used to treat head and neck squamous cell carcinoma (HNSCC) by inhibiting c-Met receptor-mediated cell proliferation, migration, and invasion. OBJECTIVE: To understand the effect of ficlatuzumab on HNSCC proliferation, migration, and invasion. DESIGN, SETTING, AND PARTICIPANTS: The effects of ficlatuzumab on HNSCC proliferation, invasion, and migration were tested. Mitigation of c-Met and downstream signaling was assessed by immunoblotting. The tumor microenvironment has emerged as an important factor in HNSCC tumor progression. The most abundant stromal cells in HNSCC tumor microenvironment are tumor-associated fibroblasts (TAFs). We previously reported that TAFs facilitate HNSCC growth and metastasis. Furthermore, activation of the c-Met tyrosine kinase receptor by TAF-secreted hepatocyte growth factor (HGF) facilitates tumor invasion. Ficlatuzumab is a humanized monoclonal antibody that sequesters HGF, preventing it from binding to and activating c-Met. We hypothesized that targeting the c-Met pathway with ficlatuzumab will mitigate TAF-mediated HNSCC proliferation, migration, and invasion. Representative HNSCC cell lines HN5, UM-SCC-1, and OSC-19 were used in these studies. EXPOSURES FOR OBSERVATIONAL STUDIES: The HNSCC cell lines were treated with ficlatuzumab, 0 to 100 µg/mL, for 24 to 72 hours. MAIN OUTCOMES AND MEASURES: Ficlatuzumab inhibited HNSCC progression through c-Met and mitogen-activated protein kinase (MAPK) signaling pathway. RESULTS: Ficlatuzumab significantly reduced TAF-facilitated HNSCC cell proliferation (HN5, P < .001; UM-SCC-1, P < .001), migration (HN5, P = .002; UM-SCC-1, P = .01; and OSC-19, P = .04), and invasion (HN5, P = .047; UM-SCC-1, P = .03; and OSC-19, P = .04) through a 3-dimensional peptide-based hydrogel (PGmatrix). In addition, ficlatuzumab also inhibited the phosphorylation of c-Met at Tyr1234/1235 and p44/42 MAPK in HNSCC cells exposed to recombinant HGF. CONCLUSIONS AND RELEVANCE: We demonstrate that neutralizing TAF-derived HGF with ficlatuzumab effectively mitigates c-Met signaling and decreases HNSCC proliferation, migration, and invasion. Thus, ficlatuzumab effectively mitigates stromal influences on HNSCC progression.


Assuntos
Anticorpos Monoclonais/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Fibroblastos/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Fibroblastos/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Immunoblotting , Microscopia Confocal , Invasividade Neoplásica/patologia
15.
ACS Appl Mater Interfaces ; 7(37): 20909-18, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26325385

RESUMO

This study demonstrates the full infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers (Si-VACNFs), a high-capacity 3D nanostructured anode, and the electrochemical characterization of its properties as an effective electrolyte/separator for future all-solid-state lithium-ion batteries. Two fabrication methods have been employed to form a stable interface between the gel polymer electrolyte and the Si-VACNF anode. In the first method, the drop-casted gel polymer electrolyte is able to fully infiltrate into the open space between the vertically aligned core-shell nanofibers and encapsulate/stabilize each individual nanofiber in the polymer matrix. The 3D nanostructured Si-VACNF anode shows a very high capacity of 3450 mAh g(-1) at C/10.5 (or 0.36 A g(-1)) rate and 1732 mAh g(-1) at 1C (or 3.8 A g(-1)) rate. In the second method, a preformed gel electrolyte film is sandwiched between an Si-VACNF electrode and a Li foil to form a half-cell. Most of the vertical core-shell nanofibers of the Si-VACNF anode are able to penetrate into the gel polymer film while retaining their structural integrity. The slightly lower capacity of 2800 mAh g(-1) at C/11 rate and ∼1070 mAh g(-1) at C/1.5 (or 2.6 A g(-1)) rate have been obtained, with almost no capacity fade for up to 100 cycles. Electrochemical impedance spectroscopy does not show noticeable changes after 110 cycles, further revealing the stable interface between the gel polymer electrolyte and the Si-VACNFs anode. These results show that the infiltrated flexible gel polymer electrolyte can effectively accommodate the stress/strain of the Si shell due to the large volume expansion/contraction during the charge-discharge processes, which is particularly useful for developing future flexible solid-state lithium-ion batteries incorporating Si-anodes.

16.
Adv Mater ; 24(16): 2123-9, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22431169

RESUMO

Amphiphilic reduced graphene oxide is obtained by oleo-functionalization with epoxidized methyl oleate (renewable feedstock) using a green process. The excellent diverse solvent-dispersivity of the oleo-reduced amphiphilic graphene and its reduction chemistry are confirmed in this study. Oleo-reduction of amphiphilic graphene is amenable to industrially viable processes to produce future graphene-based polymer composites and systems.


Assuntos
Técnicas de Química Sintética/métodos , Compostos de Epóxi/química , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Ácidos Oleicos/química , Óxidos/química , Ácido Láctico/química , Oxirredução , Poliésteres , Polímeros/química
17.
J Agric Food Chem ; 60(9): 2179-89, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22304525

RESUMO

Toxic solvent and strong acid catalysts causing environmental issues have been mainly used for ring-opening of epoxidized oleochemicals. Here, we demonstrated that magnesium stearate (Mg-stearate) was a high efficient catalyst for solvent-free ring-opening of epoxidized methyl oleate, a model compound of midchain epoxide. Mg-stearate resulted in the highest yield (95%) and conversion rate (99%) toward midchain alkoxyesters under the same conditions (160 °C, 12 h) superior to other fatty acid derivatives such as a Lewis acid (lithium and sodium stearate) and Brønsted acid (stearic acid). Based on this chemical study, we synthesized biogrease and thermoplastic using epoxidized soybean oil (ESO) and Mg-stearate via one-pot, solvent-free, and purification-free process. Mg-stearate played a significant role as a reactant for epoxide ring-opening and as a thickener when excess loading rate was used; viscosity increased from 1800 to 4500 Pa·s at 25 °C when ESO:Mg-stearate increased from 1:1 equiv to 1:2, then behaved like thermoplastics (T(g) = -27 °C, T(m) = 90 °C) with 1:4.


Assuntos
Compostos de Epóxi/química , Ácidos Oleicos/química , Ácidos Esteáricos/química , Catálise , Lubrificantes/síntese química , Petróleo , Óleo de Soja/química , Termodinâmica , Viscosidade
18.
J Agric Food Chem ; 59(18): 9958-64, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21842907

RESUMO

Soy protein elastomer (SPE) exhibits elastic, extensible, and sticky properties in its native state and displays great potential as an alternative to wheat gluten. The objective of this study was to better understand the roles of soy protein subunits (polypeptides) contributing to the functional properties of SPE. Six soy protein samples with different subunit compositions were prepared by extracting the proteins at various pH values on the basis of the different solubilities of conglycinin (7S) and glycinin (11S) globulins. Soy protein containing a large amount of high molecular weight aggregates formed from α' and α subunits exhibited stronger viscoelastic solid behavior than other soy protein samples in terms of dynamic elastic and viscous modules. Electrophoresis results revealed that these aggregates are mainly stabilized through disulfide bonds, which also contributed to higher denaturation enthalpy as characterized by DSC and larger size protein aggregates observed by TEM. Besides, the most viscoelastic soy protein sample exhibited flat and smooth surfaces of the protein particles as observed by SEM, whereas other samples had rough and porous particle surfaces. It was proposed that the ability of α' and α to form aggregates and the resultant proper protein-protein interaction in soy proteins are the critical contributions to the continuous network of SPE.


Assuntos
Subunidades Proteicas/química , Proteínas de Soja/química , Fenômenos Químicos , Dissulfetos/química , Estabilidade de Medicamentos , Elasticidade , Peso Molecular , Subunidades Proteicas/isolamento & purificação , Solubilidade , Proteínas de Soja/ultraestrutura , Viscosidade
19.
J Agric Food Chem ; 59(4): 1217-22, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21214174

RESUMO

Soy protein has shown great potential for use in biobased adhesives. ß-Conglycinin is a major component of soy protein; it accounts for 30% of the total storage protein in soybean seeds. ß-Conglycinin was isolated and purified, and its subunits' (ß, α'α) physicochemical and adhesive properties were characterized. Crude ß-conglycinin was isolated from soy flour and then purified by the ammonium sulfate precipitation method. The α'α and ß subunits were isolated from the purified ß-conglycinin by anion exchange chromatography. Yields of α'α subunits and ß subunits from 140 g of soy flour were 1.86 g (1.3%) and 0.95 g (0.67%), respectively. The minimum solubility for α'α subunits, ß subunits, and ß-conglycinin occurred in pH ranges of 4.1-5.4, 3.5-7.0, and 4.8-5.3, respectively. Transmission electron microscopy showed that the ß subunits existed as spherical hydrophobic clusters, whereas α'α subunits existed as uniformly discrete particles at pH 5.0. Differential scanning calorimetry showed that ß subunits had higher thermal stability than α'α subunits. The pH had a lesser effect on adhesion strength of the ß subunits than on that of the α'α subunits. The adhesives made from ß subunits also showed greater water resistance than those from α'α subunits and ß-conglycinin. Soy protein rich in ß subunits is likely a good candidate for developing water-resistant adhesives.


Assuntos
Antígenos de Plantas/química , Globulinas/química , Glycine max/química , Subunidades Proteicas/química , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Adesivos , Antígenos de Plantas/ultraestrutura , Fenômenos Químicos , Cromatografia por Troca Iônica , Estabilidade de Medicamentos , Globulinas/ultraestrutura , Temperatura Alta , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Subunidades Proteicas/isolamento & purificação , Proteínas de Armazenamento de Sementes/ultraestrutura , Sementes/química , Solubilidade , Proteínas de Soja/ultraestrutura
20.
J Nanosci Nanotechnol ; 10(12): 7981-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21121287

RESUMO

Protein nanomaterials at the peptide level have shown great potential for medical applications. Peptides change their morphological conformation because of changes in self-assembly properties when they are exposed to changes in solvent composition or pH. Two 15-residue peptide sequences, KhK (KKKFLIVIGSIIKKK) and Alternating Kh (KFLKKIVKIGKKSII), were designed for the purpose of determining the role of peptide sequence on solution morphology and conformation. KhK solutions exhibited a random coil to helical transition when solvent conditions were changed from water to a trifluorethanol/water solution at acidic pH. Alternating Kh solutions, however, demonstrated primarily random coil character under similar solvent and pH conditions as determined by circular dichroism spectroscopy and 2D-1H-1H nuclear magnetic resonance spectroscopy. At basic pH, circular dichroism spectroscopy and nuclear magnetic resonance spectroscopy analysis demonstrated that random coil character increased at basic pH for KhK, whereas Alternating Kh exhibited an increase in beta-sheet character. Further analysis by transmission electron microscopy showed marked differences in the peptide solution morphology. Peptide particle aggregation and fiber formation were significantly affected by solvent composition and pH values for both peptide sequences.


Assuntos
Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Modelos Químicos , Dados de Sequência Molecular , Nanoestruturas , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...