Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38670447

RESUMO

As a major mental health disorder, symptoms of schizophrenia (SCZ) include delusions, reduced motivation, hallucinations, reduced motivation and a variety of cognitive disabilities. Many of these symptoms are now known to be associated with abnormal regulation of the immune system. Low blood levels of cytokines and chemokines have been suggested to be one of the underlying causes of SCZ. However, their biological roles at different stages of SCZ remain unclear. Our objective was to investigate expression patterns of cytokines and chemokines at different stages of onset and relapse in SCZ patients and to conduct an analysis of their relationship to disease progression. We also aimed to identify immune features associated with different disease trajectories in patients with SCZ. Gene set enrichment analysis (GSEA) was used to interrogate the GSE27383 dataset and identify key genes associated with inflammation. These results led us to recruit 36 healthy controls, 40 patients with first-episode psychosis (FEP), and 39 patients with SCZ relapse. Meso Scale Discovery technology was used to independently validate serum levels of 35 cytokines and chemokines. This was followed by a meta-analysis to gain a more comprehensive understanding of the role of interleukin-8 (IL-8/CXCL8) in SCZ. Analysis of the GSE27383 database revealed 3596 genes with distinct expression patterns. A significant portion of these genes were identified as inflammation-related and showed remarkable enrichment in three key pathways: IL-17, cytokine-cytokine receptor, and AGE-RAGE signaling in diabetic complications. We observed co-expression of CXCL8 and IL-16 within these three pathways. In a subsequent analysis of independently validated samples, a notable discrepancy was detected in the inflammatory status between individuals experiencing FEP and those in relapse. In particular, expression of CXCL8 demonstrated superior predictive capability in FEP and relapsed patients. Notably, results of the meta-analysis confirmed that Chinese and European populations were consistent with the overall results (Z = 4.60, P < 0.001; Z = 3.70, P < 0.001). However, in the American subgroup, there was no significant difference in CXCL8 levels between patients with SCZ compared to healthy controls (Z = 1.09, P = 0.277). Our findings suggest that the inflammatory response in patients with SCZ differs across the different stages, with CXCL8 emerging as a potential predictive factor. Collectively, our data suggest that CXCL8 has the potential to serve as a significant immunological signature of SCZ subtypes. Trial registration: The clinical registration number for this trial is ChiCTR2100045240 (Registration Date: 2021/04/09).

2.
Front Immunol ; 15: 1326137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469295

RESUMO

Duodenogastric reflux (DGR) has been linked to the onset of gastric cancer (GC), although the precise mechanism is yet obscure. Herein, we aimed to investigate how refluxed bile acids (BAs) and macrophages are involved in gastric carcinogenesis. In both active human bile reflux gastritis and the murine DGR model, ubiquitin specific protease 50 (USP50) was dramatically raised, and macrophages were the principal leukocyte subset that upregulated USP50 expression. Enhancing USP50 expression amplified bile acid-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and subsequent high-mobility group box protein 1 (HMGB1) release, while USP50 deficiency resulted in the reversed alteration. Mechanistically, USP50 interacted with and deubiquitinated apoptosis-associated speck-like protein containing CARD (ASC) to activate NLRP3 inflammasome. The release of HMGB1 contributes to gastric tumorigenesis by PI3K/AKT and MAPK/ERK pathways. These results may provide new insights into bile reflux-related gastric carcinogenesis and options for the prevention of DGR-associated GC.


Assuntos
Refluxo Biliar , Refluxo Duodenogástrico , Proteína HMGB1 , Animais , Humanos , Camundongos , Carcinogênese , Transformação Celular Neoplásica , Proteína HMGB1/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfatidilinositol 3-Quinases
3.
iScience ; 27(3): 109118, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439955

RESUMO

Duodenogastric reflux (DGR) is closely associated with gastric inflammation and tumorigenesis; however, the precise mechanism is unclear. Hence, we aim to clarify this molecular mechanism and design an effective therapeutic strategy based on it. The present study found that DGR induced TXNIP/NLRP3 inflammasome activation and triggered pyroptosis in gastric mucosa in vitro and in vivo, in which endoplasmic reticulum (ER) stress via PERK/eIF2α/CHOP signaling was involved. Mechanistically, farnesoid X receptor (FXR) antagonized the DGR-induced PERK/eIF2α/CHOP pathway and reduced TXNIP and NLRP3 expression. Moreover, FXR suppressed NLRP3 inflammasome activation by physically interacting with NLRP3 and caspase-1. Administration of the FXR agonist OCA protected the gastric mucosa from DGR-induced barrier disruption and mucosal inflammation. In conclusion, our study demonstrates the involvement of TXNIP/NLRP3 inflammasome-mediated pyroptosis in DGR-induced gastric inflammation. FXR antagonizes gastric barrier disruption and mucosal inflammation induced by DGR. Restoration of FXR activity may be a therapeutic strategy for DGR-associated gastric tumorigenesis.

4.
Ren Fail ; 46(1): 2330629, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38494199

RESUMO

Acetaminophen (APAP)-induced acute kidney injury (APAP-AKI) has turned into one of reasons for clinic obtained renal insufficiency. Magnesium hydride (MgH2), as a solid-state hydrogen source, might be potentially applied in clinical practice. The current study aimed to investigate the protective effect of MgH2 against APAP-AKI. The results showed that MgH2 improved renal function and histological injury in mice of APAP-AKI. MgH2 also had protective effects on APAP-induced cytotoxicity in HK-2 cells. In addition, the increased level of reactive oxygen species (ROS) and expressions of inflammatory cytokines (TNF-α and IL-1ß) and pro-apoptotic factors (Bad, Bax, Caspase3, and CytC) induced by APAP were downregulated with MgH2 treatment. Furthermore, the expressions of molecules related to TXNIP/NLRP3/NF-κB pathway (TXNIP, NLRP3, NF-κB p65 and p-NF-κB p65) in renal tissues and HK-2 cells were enhanced by APAP overdose, which were reduced by MgH2 administration. Collectively, this study indicated that MgH2 protects against APAP-AKI by alleviating oxidative stress, inflammation and apoptosis via inhibition of TXNIP/NLRP3/NF-κB signaling pathway.


Assuntos
Injúria Renal Aguda , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Acetaminofen/toxicidade , Magnésio , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle
5.
J Immunol Methods ; 526: 113619, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272178

RESUMO

A prominent inflammatory cell type in allergic diseases is the eosinophil, a granulated white blood cell that releases pro-inflammatory cytokines. Eosinophil-derived cytokines, including interleukin-9 (IL-9) and interleukin-13 (IL-13), can skew the immune response towards an allergic phenotype. Unfortunately, it is challenging to immunolabel and collect quantifiable images of eosinophils given their innate autofluorescence and ability to nonspecifically bind to antibodies. Hence, it is important to optimize permeabilization, blocking, and imaging conditions for eosinophils. Here, we show enhanced protocols to ensure that measured immunofluorescence represents specific immunolabelling. To test this, eosinophils were purified from human blood, adhered to glass coverslips, stimulated with or without platelet-activating factor (PAF), fixed with paraformaldehyde, and then permeabilized with Triton X-100 or saponin. Cells were then blocked with goat serum or human serum and incubated with antibodies labelling cytokines (IL-9 and IL-13) and secretory organelles (CD63 for crystalloid granules and transferrin receptor [TfnRc] for recycling endosomes). Carefully selected isotype controls were used throughout, and cells were imaged using Deltavision super-resolution microscopy. Intensities of fluorescent probes were quantified using Volocity software. Our findings show that permeabilization with saponin, blockage with human serum, and using concentrations of antibodies up to 10 µg/ml allowed us to detect marked differences in fluorescence intensities between isotypes and test antibodies. With the achievement of sufficient qualitative and quantitative measures of increased test probe intensity compared to respective isotypes, these results indicate that our protocol allows for optimal immunolabelling of eosinophils. Using this protocol, future studies may provide further insights into trafficking mechanisms within this important inflammatory cell type.


Assuntos
Eosinófilos , Saponinas , Humanos , Interleucina-9/metabolismo , Interleucina-13/metabolismo , Citocinas/metabolismo , Imunofluorescência , Saponinas/metabolismo
6.
Chemosphere ; 349: 140905, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065263

RESUMO

Colorectal diseases such as colorectal cancer (CRC) and inflammatory bowel disease (IBD) have become one of the most common public health concerns worldwide due to the increasing incidence. Environmental factors are one of the important causes of colorectal diseases, as they can affect the intestinal barrier function, immune response and microbiota, causing intestinal inflammation and tumorigenesis. Triphenyl phosphate (TPHP), a widely used organophosphorus flame retardant that can leach and accumulate in various environmental media and biota, can enter the human intestine through drinking water and food. However, the effects of TPHP on colorectal health have not been well understood. In this study, we investigated the adverse influence of TPHP exposure on colorectal cells (in vitro assay) and C57BL/6 mice (in vivo assay), and further explored the potential mechanism underlying the association between TPHP and colorectal disease. We found that TPHP exposure inhibited cell viability, increased apoptosis and caused G1/S cycle arrest of colorectal cells. Moreover, TPHP exposure damaged colorectal tissue structure, changed immune-related gene expression in the colorectal transcriptome, and disrupted the composition of colorectal microbiota. Importantly, we found that TPHP exposure upregulated chemokine CXCL10, which was involved in colorectal diseases. Our study revealed that exposure to TPHP had significant impacts on colorectal health, which may possibly stem from alterations in host immunity and the structure of the colorectal microbial community.


Assuntos
Neoplasias Colorretais , Retardadores de Chama , Microbiota , Animais , Camundongos , Humanos , Retardadores de Chama/metabolismo , Camundongos Endogâmicos C57BL , Compostos Organofosforados , Organofosfatos/metabolismo , Neoplasias Colorretais/induzido quimicamente
7.
Br J Surg ; 111(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37943801

RESUMO

BACKGROUND: Right hemicolectomy is the standard treatment for right-sided colon cancer. There is variation in the technical aspects of performing right hemicolectomy as well as in short-term outcomes. It is therefore necessary to explore best clinical practice following right hemicolectomy in expert centres. METHODS: This snapshot study of right hemicolectomy for colon cancer in China was a prospective, multicentre cohort study in which 52 tertiary hospitals participated. Eligible patients with stage I-III right-sided colon cancer who underwent elective right hemicolectomy were consecutively enrolled in all centres over 10 months. The primary endpoint was the incidence of postoperative 30-day anastomotic leak. RESULTS: Of the 1854 patients, 89.9 per cent underwent laparoscopic surgery and 52.3 per cent underwent D3 lymph node dissection. The overall 30-day morbidity and mortality were 11.7 and 0.2 per cent, respectively. The 30-day anastomotic leak rate was 1.4 per cent. In multivariate analysis, ASA grade > II (P < 0.001), intraoperative blood loss > 50 ml (P = 0.044) and D3 lymph node dissection (P = 0.008) were identified as independent risk factors for postoperative morbidity. Extracorporeal side-to-side anastomosis (P = 0.031), intraoperative blood loss > 50 ml (P = 0.004) and neoadjuvant chemotherapy (P = 0.004) were identified as independent risk factors for anastomotic leak. CONCLUSION: In high-volume expert centres in China, laparoscopic resection with D3 lymph node dissection was performed in most patients with right-sided colon cancer, and overall postoperative morbidity and mortality was low. Further studies are needed to explore the optimal technique for right hemicolectomy in order to improve outcomes further.


Assuntos
Neoplasias do Colo , Laparoscopia , Humanos , Fístula Anastomótica/epidemiologia , Fístula Anastomótica/etiologia , Fístula Anastomótica/cirurgia , Estudos de Coortes , Estudos Prospectivos , Perda Sanguínea Cirúrgica , Neoplasias do Colo/patologia , Colectomia/efeitos adversos , Colectomia/métodos , Morbidade , Fatores de Risco , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Estudos Retrospectivos
8.
Int Dent J ; 74(1): 81-87, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37500450

RESUMO

OBJECTIVES: Clear aligner therapy (CAT) has been gaining popularity amongst the orthodontic community. No systematic course on CAT has been reported to date. The objectives of this study were to determine practitioners' knowledge and to offer insights for future tailored courses on CAT. METHODS: An online questionnaire was distributed. The questionnaire comprised personal background information, predictability of tooth movement through CAT, and CAT knowledge that practitioners demanded to learn. Four senior expert orthodontists' answers to the predictability of tooth movement through CAT were averaged to be a standard reference. Descriptive statistics, 1-way analysis of variance (ANOVA), principal component analysis, Student t test, and multivariate logistics regression analysis were performed with significance set at P < .05. RESULTS: In total, 190 practitioners participated in this study. As compared to the standard reference, participants overestimated the predictability of difficult-to-be-achived tooth movements (eg, molar mesialisation; P < .0001). Strategy of managing troubleshooting cases and extraction cases ranked the highest CAT knowledge that participants requested to learn. Practice type, number of completed CAT cases, number of undergoing CAT cases, years of practice, education background, and time of using CAT were the influencing factors of the questions regarding the predictability of tooth movement through CAT and CAT knowledge that were demanded to be learned. CONCLUSIONS: The predictability of difficult-to-be-achieved tooth movement through CAT is often overestimated by practitioners with limited clinical experience. Tailored education on CAT, especially managing troubleshooting cases and extraction cases, should be designed for all practitioners.


Assuntos
Aparelhos Ortodônticos Removíveis , Técnicas de Movimentação Dentária , Humanos , Escolaridade
9.
J Integr Plant Biol ; 66(1): 66-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37970747

RESUMO

RNA-binding proteins (RBPs) are components of the post-transcriptional regulatory system, but their regulatory effects on complex traits remain unknown. Using an integrated strategy involving map-based cloning, functional characterizations, and transcriptomic and population genomic analyses, we revealed that RBP-K (LOC_Os08g23120), RBP-A (LOC_Os11g41890), and RBP-J (LOC_Os10g33230) encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits. Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally. Additionally, RBP-J most likely affects GA pathways, resulting in considerable increases in grain and panicle lengths, but decreases in grain width and thickness. In contrast, RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport, with substantial effects on the rice grain filling process as well as grain length and weight. Evolutionarily, RBP-K is relatively ancient and highly conserved, whereas RBP-J and RBP-A are more diverse. Thus, the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency, efficiency, and versatility, as well as increased evolutionary potential. Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits. Furthermore, rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.


Assuntos
Oryza , Animais , Oryza/genética , Oryza/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Fenótipo
10.
Med Gas Res ; 14(2): 48-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37929507

RESUMO

Hydrogen is a simple, colorless, and biologically active small molecule gas that can react with reactive oxygen species. Recent research suggests that hydrogen possesses several biological effects, including antioxidant, anti-inflammatory, and anti-apoptotic effects, while exhibiting an extremely high level of safety. Hydrogen application has shown promise in treating a range of acute and chronic diseases, both benign and malignant. Importantly, an increasing number of clinical studies on hydrogen have demonstrated its efficacy and safety in treating various diseases. This review highlights the beneficial effects of hydrogen in kidney diseases, summarizes potential mechanisms by which hydrogen may act in these diseases, and proposes several promising avenues for future research.


Assuntos
Sulfeto de Hidrogênio , Nefropatias , Humanos , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Nefropatias/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio
11.
Environ Sci Technol ; 57(49): 20844-20853, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019560

RESUMO

Glacier melting exports a large amount of nitrate to downstream aquatic ecosystems. Glacial lakes and glacier-fed rivers in proglacial environments serve as primary recipients and distributors of glacier-derived nitrate (NO3-), yet little is known regarding the sources and cycling of nitrate in these water bodies. To address this knowledge gap, we conducted a comprehensive analysis of nitrate isotopes (δ15NNO3, δ18ONO3, and Δ17ONO3) in waters from the glacial lake and river of the Rongbuk Glacier-fed Basin (RGB) in the mountain Everest region. The concentrations of NO3- were low (0.43 ± 0.10 mg/L), similar to or even lower than those observed in glacial lakes and glacier-fed rivers in other high mountain regions, suggesting minimal anthropogenic influence. The NO3- concentration decreases upon entering the glacial lake due to sedimentation, and it increases gradually from upstream to downstream in the river as a soil source is introduced. The analysis of Δ17ONO3 revealed a substantial contribution of unprocessed atmospheric nitrate, ranging from 34.29 to 56.43%. Denitrification and nitrification processes were found to be insignificant in the proglacial water of RGB. Our study highlights the critical role of glacial lakes in capturing and redistributing glacier-derived NO3- and emphasizes the need for further investigations on NO3- transformation in the fast-changing proglacial environment over the Tibetan Plateau and other high mountain regions.


Assuntos
Nitratos , Poluentes Químicos da Água , Nitratos/análise , Isótopos de Nitrogênio/análise , Água , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China
12.
Mol Med ; 29(1): 137, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858064

RESUMO

BACKGROUND: Intestinal ischemia-reperfusion injury occurs in acute intestinal obstruction, intussusception, acute mesenteric artery embolism, and other diseases and can lead to local intestinal necrosis, distant organ involvement, or systemic reactions, with high morbidity and mortality. Ferroptosis plays a crucial role in intestinal ischemia-reperfusion injury, and inhibition of ferroptosis may provide new approaches for treating the disease. SIRT3 protects cells from oxidative stress and may be involved in the process of ferroptosis. We hypothesized that resveratrol, an agonist of SIRT3, could ameliorate intestinal ischemia-reperfusion injury by compensating the GSH/GPX4 pathway. METHODS: Intestinal ischemia-reperfusion (I/R) and Caco-2 hypoxia-reoxygenation models were established. Transmission electron microscopy was used to assess mitochondrial function; the Chiu's score was used to evaluate the degree of intestinal mucosal injury based on HE staining; and Western blot was used to detect the SIRT3/FoxO3a pathway, tight junction proteins and ferroptosis-related protein expression. Sirt3-/- C57, shSIRT3-Caco-2 cells and siFoxO3a-Caco-2 cells were established. C11-BODIPY was used to detect lipid peroxide in cells; FD4 and IFABP were used to detect intestinal permeability; MitoSOX was used to detect ROS levels; and MitoTracker and immunofluorescence colocalization were used to detect SIRT3 levels. RESULTS: In the intestinal I/R model, I/R injury occurs mainly during the reperfusion period and leads to ferroptosis through the GSH/GPX4 pathway. Resveratrol could reduce ferroptosis and ameliorate I/R injury by activating SIRT3. In Sirt3-/- mice, more intestinal mucosal cells underwent ferroptosis, I/R injury was more severe, and resveratrol lost the ability to ameliorate I/R injury. In addition, hypoxia-reoxygenation increased RSL3-induced ferroptosis sensitivity in Caco-2 cells in vitro. In the presence of shSIRT3 or RSL3 alone, resveratrol could ameliorate Caco-2 ferroptosis, but not RSL3-induced shSIRT3-Caco-2 ferroptosis. Furthermore, resveratrol might activate the SIRT3/FoxO3a pathway, increase the expression of SOD2 and catalase, and inhibit ROS generation, thus reducing lipid peroxidation and ferroptosis. CONCLUSION: To date, this is the first study to show that resveratrol ameliorates intestinal ischemia-reperfusion injury by activating SIRT3 and reducing ferroptosis. Resveratrol can reduce intestinal ischemia-reperfusion injury by activating the SIRT3/FoxO3a pathway, increasing the expression of SOD2 and catalase, reducing ROS and LPO production, compensating for the GSH/GPX4 pathway and inhibiting ferroptosis. Resveratrol increases the expression of SOD2 and catalase, reduces the production of ROS and LPO, compensates for the GSH/GPX4 pathway and inhibits ferroptosis by activating the SIRT3/FoxO3a pathway.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Sirtuína 3 , Humanos , Camundongos , Animais , Resveratrol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Catalase , Sirtuína 3/genética , Sirtuína 3/metabolismo , Células CACO-2 , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Hipóxia
13.
Cell Death Differ ; 30(11): 2393-2407, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816999

RESUMO

In the current study, we have shown that USP51 promotes colorectal cancer stemness and chemoresistance, and high expression of USP51 predicts survival disadvantage in colorectal cancer patients. Mechanically, USP51 directly binds to Elongin C (ELOC) and forms a larger functional complex with VHL E3 ligase (USP51/VHL/CUL2/ELOB/ELOC/RBX1) to regulate the ubiquitin-dependent proteasomal degradation of HIF1A. USP51 efficiently deubiquitinates HIF1A and activates hypoxia-induced gene transcription. Conversely, the activation of HIF1A under hypoxia transcriptionally upregulates the expression of USP51. Thus, USP51 and HIF1A form a positive feedback loop. Further, we found that the SUMOylation of ELOC at K32 inhibits its binding to USP51. SUMO-specific protease 1 (SENP1) mediates the deSUMOylation of ELOC, promoting the binding of USP51 to ELOC and facilitating the deubiquitination and stabilization of HIF1A by USP51. Importantly, USP51 plays a crucial role in promoting the HIF1A and SENP1-dependent proliferation, migration, stemness, and chemoresistance under hypoxia in colorectal cancer. Together, our data revealed that USP51 is an oncogene stabilizing the pro-survival protein HIF1A, offering a potential therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina , Hipóxia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteases Específicas de Ubiquitina
14.
Mol Med ; 29(1): 121, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684566

RESUMO

BACKGROUND: As the tissue with the highest selenium content in the body, the occurrence and development of thyroid cancer are closely related to selenium and selenoproteins. Selenium-binding protein 1 (SBP1) has been repeatedly implicated in several cancers, but its role and molecular mechanisms in thyroid cancer remains largely undefined. METHODS: The expression of SBP1, sodium/iodide symporter (NIS) and thioredoxin (TXN) were analyzed in clinical samples and cell lines. Cell counting kit-8 (CCK-8) and tube formation assays were used to analyze the cell viability and tube formation of cells. Immunofluorescence was used to determine the expression of the NIS. Co-immunoprecipitation (Co-IP) assay was carried out to verify the interaction of SBP1 with TXN. The mouse xenograft experiment was performed to investigate the growth of thyroid cancer cells with SBP1 knockdown in vivo. RESULTS: SBP1 was significantly increased in human thyroid cancer tissues and cells, especially in anaplastic thyroid cancer. Overexpression of SBP1 promoted FTC-133 cell proliferation, and the culture supernatant of SBP1-overexpression FTC-133 cells promoted tube formation of human retinal microvascular endothelial cells. Knockdown of SBP1, however, inhibited cell proliferation and tube formation. Furthermore, overexpression of SBP1 inhibited cellular differentiation of differentiated thyroid cancer cell line FTC-133, as indicated by decreased expression of thyroid stimulating hormone receptors, thyroglobulin and NIS. Knockdown of SBP1, however, promoted differentiation of BHT101 cells, an anaplastic thyroid cancer cell line. Notably, TXN, a negative regulator of NIS, was found to be significantly upregulated in human thyroid cancer tissues, and it was positively regulated by SBP1. Co-IP assay implied a direct interaction of SBP1 with TXN. Additionally, TXN overexpression reversed the effect of SBP1 knockdown on BHT101 cell viability, tube formation and cell differentiation. An in vivo study found that knockdown of SBP1 promoted the expression of thyroid stimulating hormone receptors, thyroglobulin and NIS, as well as inhibited the growth and progression of thyroid cancer tumors. CONCLUSION: SBP1 promoted tumorigenesis and dedifferentiation of thyroid cancer through positively regulating TXN.


Assuntos
Selênio , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Humanos , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica , Células Endoteliais , Receptores da Tireotropina , Tiorredoxinas , Tireoglobulina , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Proteínas de Ligação a Selênio/metabolismo
15.
Cancer Gene Ther ; 30(10): 1414-1425, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558749

RESUMO

Colorectal cancer (CRC) remains a leading cause of cancer-related death worldwide. Cetuximab, in combination with chemotherapy, is effective for treating patients with wild-type KRAS/BRAF metastatic CRC (mCRC). However, intrinsic or acquired drug resistance often limits the use of cetuximab. In this study, we investigated the potential of co-treatment with 3-Bromopyruvate (3-BP) and cetuximab to overcome cetuximab resistance in CRC, both in vitro and in vivo. Our results demonstrated that the co-treatment of 3-BP and cetuximab synergistically induced an antiproliferative effect in both CRC cell lines with intrinsic cetuximab resistance (DLD-1 (KRASG13D/-) and HT29 (BRAFV600E)) and in a cetuximab-resistant cell line derived from Caco-2 with acquired resistance (Caco-2-CR). Further analysis revealed that co-treatment induced ferroptosis, autophagy, and apoptosis. Mechanistically, co-treatment inhibited FOXO3a phosphorylation and degradation and activated the FOXO3a/AMPKα/pBeclin1 and FOXO3a/PUMA pathways, leading to the promotion of ferroptosis, autophagy, and apoptosis in DLD-1 (KRASG13D/-), HT29 (BRAFV600E), and Caco-2-CR cells. In conclusion, our findings suggest that co-treatment with 3-BP and cetuximab could be a promising strategy to overcome cetuximab resistance in human CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Ferroptose , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Antineoplásicos/farmacologia , Células CACO-2 , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras) , Resistencia a Medicamentos Antineoplásicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação
16.
Microbiol Spectr ; 11(4): e0468922, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37318345

RESUMO

We developed a reusable and open-source machine learning (ML) pipeline that can provide an analytical framework for rigorous biomarker discovery. We implemented the ML pipeline to determine the predictive potential of clinical and immunoproteome antibody data for outcomes associated with Chlamydia trachomatis (Ct) infection collected from 222 cis-gender females with high Ct exposure. We compared the predictive performance of 4 ML algorithms (naive Bayes, random forest, extreme gradient boosting with linear booster [xgbLinear], and k-nearest neighbors [KNN]), screened from 215 ML methods, in combination with two different feature selection strategies, Boruta and recursive feature elimination. Recursive feature elimination performed better than Boruta in this study. In prediction of Ct ascending infection, naive Bayes yielded a slightly higher median value of are under the receiver operating characteristic curve (AUROC) 0.57 (95% confidence interval [CI], 0.54 to 0.59) than other methods and provided biological interpretability. For prediction of incident infection among women uninfected at enrollment, KNN performed slightly better than other algorithms, with a median AUROC of 0.61 (95% CI, 0.49 to 0.70). In contrast, xgbLinear and random forest had higher predictive performances, with median AUROC of 0.63 (95% CI, 0.58 to 0.67) and 0.62 (95% CI, 0.58 to 0.64), respectively, for women infected at enrollment. Our findings suggest that clinical factors and serum anti-Ct protein IgGs are inadequate biomarkers for ascension or incident Ct infection. Nevertheless, our analysis highlights the utility of a pipeline that searches for biomarkers and evaluates prediction performance and interpretability. IMPORTANCE Biomarker discovery to aid early diagnosis and treatment using machine learning (ML) approaches is a rapidly developing area in host-microbe studies. However, lack of reproducibility and interpretability of ML-driven biomarker analysis hinders selection of robust biomarkers that can be applied in clinical practice. We thus developed a rigorous ML analytical framework and provide recommendations for enhancing reproducibility of biomarkers. We emphasize the importance of robustness in selection of ML methods, evaluation of performance, and interpretability of biomarkers. Our ML pipeline is reusable and open-source and can be used not only to identify host-pathogen interaction biomarkers but also in microbiome studies and ecological and environmental microbiology research.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Humanos , Feminino , Teorema de Bayes , Reprodutibilidade dos Testes , Biomarcadores , Imunoglobulina G , Genitália , Aprendizado de Máquina
17.
Antioxidants (Basel) ; 12(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37371975

RESUMO

OBJECTIVE: Molecular hydrogen (H2) exhibits antioxidant, anti-inflammatory and anti-apoptotic effects, and has shown benefits in glucose and lipid metabolism in certain animal metabolic disorder models. However, the potential benefits of H2 treatment in individuals with impaired fasting glucose (IFG) has seldom been studied. This randomized controlled study (RCT) aims to investigate the effects of hydrogen-rich water (HRW) on IFG subjects and explore the underlying mechanism involved. METHODS: Seventy-three patients with IFG were enrolled in a randomized, double-blind, placebo-controlled clinical study. These patients were assigned to receive either 1000 mL per day of HRW or placebo pure water (no H2 infusion) for a duration of eight weeks. Metabolic parameters and fecal gut microbiota were assessed at baseline (week 0) and at week 8. A combined analysis of metabolomics and intestinal microbiota was conducted to investigate the correlation between the effect of H2 on the metabolisms and the diversity of intestinal flora in the IGF patients. RESULTS: Both pure water and HRW demonstrated a significant reduction in fasting blood glucose in IFG patients, with a significant difference between pure water and HRW after eight weeks. Among IFG patients with abnormal pre-experimental fatty liver, 62.5% (10/16) in the HRW group and 31.6% (6/19) in the pure water group achieved remission. Furthermore, 16S RNA analysis revealed HRW-modified gut microbiota dysbiosis in the fecal samples of IGF patients. Through Pearson correlation analysis, the differential gut microbiota obtained by 16S analysis was found to be highly correlated with nine metabolites. CONCLUSION: H2 slightly improved metabolic abnormalities and gut microbiota dysbiosis, providing a novel target and theoretical basis for the prevention and treatment of blood glucose regulation in patients with IFG.

18.
J Hazard Mater ; 452: 131250, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004441

RESUMO

Mercury (Hg) released by melting glaciers is likely to bind to suspended particles in meltwater runoff, posing potential risks to downstream ecosystems. The rapidly receding glaciers on the Tibetan Plateau promote the export of total suspended particles (TSP), increasing the uncertainty of Hg export released by glacier melting. To investigate the relationships between TSP and Hg, a multimedia sampling campaign was conducted in July 2020 in the Kuoqionggangri glacier region of the Lhasa River Valley No. 1 glacierized basin located in the inland Tibetan Plateau. Samples from glacier snow/ice, supraglacial rivers, subglacial rivers, proglacial lakes, and meltwater runoff were obtained, and the relationships between TSP and Hg and their transport in glacier meltwater runoff in the context of glacier retreat were explored. The average TSP concentration of different environmental samples ranged from 9.51 mg/L to 399. 27 mg/L, showing significant differences. The average total Hg (THg) concentrations ranged from 0.52 ng/L to 58.81 ng/L and decreased in the order of snow/ice >runoff> subglacial river > proglacial lake > supraglacial river. Both TSP mass concentration and number concentration have an impact on the diurnal variation in meltwater runoff Hg, and the influence of TSP number concentration is stronger than that of concentration. Sites with high TSP concentrations and quantities tended to have higher Hg concentrations, while TSP particle size had no significant effect on Hg concentration or spatial distribution. Our study further divided the glacier recharge basin into the glacier cover zone, the periglacial zone, and the downstream zone and discussed the potential impact of TSP on Hg transport in each zone. Our analysis highlights that the periglacial zone will expand and activate the resuspension process of river sediments in the warming future, which may increase the export of TSP and Hg downstream.

19.
J Control Release ; 358: 204-218, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121518

RESUMO

MiRNA-based gene therapy as a novel targeted therapy has yielded promising results in experimental cancer treatment, however, the inefficient delivery of miRNA to target tissues has limited its application in vivo. Here a unique dual-membrane-camouflaged miRNA21 antagomir delivery nanoplatform (M@NPs/miR21) with immune escape and homologous targeting properties was constructed by cancer cell membrane and macrophage membrane. Different from the single-cell membrane camouflage strategy, the dual-membrane camouflage miRNA21 antagomir delivery nanoplatform based on modification of CD47 protein with immune escape signal and galectin-3 protein with tumor cell aggregation enables efficient, safe and targeted therapy for colon cancer and lung metastases. Camouflaged with the dual-cell membrane, the "Trojan horse" like "pseudo-tumor cell" and/or "pseudo-macrophage" (M@NPs/miR21) carried the target gene miR21 antagomir to the tumor site and showed significant anti-tumor properties at the periphery and the core of subcutaneous tumor tissues. In addition, M@NPs/miR21 was more likely to penetrate dense tumor tissues and function within the tumor mass than NPs/miR21 without membrane coating. M@NPs/miR21 can deliver miR21 antagomir into MC38 cancer cells and tumor tissues, promote tumor apoptosis, and regulate the expression of Bcl2 and Ki67. Moreover, the M@NPs/miR21 gene delivery system not only can effectively inhibit the progression of subcutaneous tumors and lung metastases, but also showed minimal toxicity and good biosafety, making this delivery system particularly attractive for future translational research.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Nanopartículas , Humanos , Antagomirs , Biônica , MicroRNAs/genética , Neoplasias Pulmonares/patologia , Membrana Celular/metabolismo , Técnicas de Transferência de Genes , Linhagem Celular Tumoral
20.
Heliyon ; 9(3): e13904, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873554

RESUMO

Sciatic hernia is one of the rarely pelvic floor hernias. We report a 45-year-old woman who presented with acute crampy pain of hypogastrium which radiated down the back of the left thigh and found a mass in her left buttock area which is about fist size with local pain, so she had to force to bow position when walking. She was also associated with definite gastro-intestinal symptoms. Computed tomography (CT) of the pelvis and abdomen demonstrated the herniation of an ileal loop through the sciatic foramen on the left side. The diagnosis and management of this case are herein described and previous publications on sciatic hernias are reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...