Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 488, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36229795

RESUMO

BACKGROUND: N-acyl-homoserine lactones (AHLs) are used as quorum-sensing signals by Gram-negative bacteria, but they can also affect plant growth and disease resistance. N-decanoyl-L-homoserine lactone (C10-HSL) is an AHL that has been shown to inhibit primary root growth in Arabidopsis, but the mechanisms underlying its effects on root architecture are unclear. Here, we investigated the signaling components involved in C10-HSL-mediated inhibition of primary root growth in Arabidopsis, and their interplay, using pharmacological, physiological, and genetic approaches. RESULTS: Treatment with C10-HSL triggered a transient and immediate increase in the concentrations of cytosolic free Ca2+ and reactive oxygen species (ROS), increased the activity of mitogen-activated protein kinase 6 (MPK6), and induced nitric oxide (NO) production in Arabidopsis roots. Inhibitors of Ca2+ channels significantly alleviated the inhibitory effect of C10-HSL on primary root growth and reduced the amounts of ROS and NO generated in response to C10-HSL. Inhibition or scavenging of ROS and NO neutralized the inhibitory effect of C10-HSL on primary root growth. In terms of primary root growth, the respiratory burst oxidase homolog mutants and a NO synthase mutant were less sensitive to C10-HSL than wild type. Activation of MPKs, especially MPK6, was required for C10-HSL to inhibit primary root growth. The mpk6 mutant showed reduced sensitivity of primary root growth to C10-HSL, suggesting that MPK6 plays a key role in the inhibition of primary root growth by C10-HSL. CONCLUSION: Our results indicate that MPK6 acts downstream of ROS and upstream of NO in the response to C10-HSL. Our data also suggest that Ca2+, ROS, MPK6, and NO are all involved in the response to C10-HSL, and may participate in the cascade leading to C10-HSL-inhibited primary root growth in Arabidopsis.


Assuntos
Arabidopsis , 4-Butirolactona/análogos & derivados , Acil-Butirolactonas/farmacologia , Bactérias , Proteína Quinase 6 Ativada por Mitógeno , Óxido Nítrico/farmacologia , Percepção de Quorum , Espécies Reativas de Oxigênio
2.
Nanoscale Res Lett ; 13(1): 107, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29671093

RESUMO

We have studied the electronic structure and the current-voltage (I-V) characteristics of one-dimensional InSe nanoribbons using the density functional theory combined with the nonequilibrium Green's function method. Nanoribbons having bare or H-passivated edges of types zigzag (Z), Klein (K), and armchair (A) are taken into account. Edge states are found to play an important role in determining their electronic properties. Edges Z and K are usually metallic in wide nanoribbons as well as their hydrogenated counterparts. Transition from semiconductor to metal is observed in hydrogenated nanoribbons HZZH as their width increases, due to the strong width dependence of energy difference between left and right edge states. Nevertheless, electronic structures of other nanoribbons vary with the width in a very limited scale. The I-V characteristics of bare nanoribbons ZZ and KK show strong negative differential resistance, due to spatial mismatch of wave functions in energy bands around the Fermi energy. Spin polarization in these nanoribbons is also predicted. In contrast, bare nanoribbons AA and their hydrogenated counterparts HAAH are semiconductors. The band gaps of nanoribbons AA (HAAH) are narrower (wider) than that of two-dimensional InSe monolayer and increase (decrease) with the nanoribbon width.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...