Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Chemosphere ; 359: 142228, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705407

RESUMO

Copper oxides are vital catalysts in facilitating the formation of polychlorinated thianthrenes/dibenzothiophenes (PCTA/DTs) through heterogeneous reactions in high-temperature industrial processes. Chlorothiophenols (CTPs) are the most crucial precursors for PCTA/DT formation. The initial step in this process is the metal-catalyzed production of chlorothiophenoxy radicals (CTPRs) from CTPs via dissociation reactions. This work combines density functional theory (DFT) calculations with ab initio molecular dynamics (AIMD) simulations to explore the formation mechanism of the adsorbed 2-CTPR from 2-CTP, with the assistance of CuO(111). Our study demonstrates that flat adsorption configurations of 2-CTP on the CuO(111) surface are more stable than vertical configurations. The CuO(111) surface acts as a strong catalyst, facilitating the dissociation of 2-CTP into the adsorbed 2-CTPR. Surface oxygen vacancies enhance the adsorption of 2-CTP on the CuO(111) surface, while moderately suppressing the dissociation of 2-CTP. More importantly, water molecules and surface hydroxyl groups actively promote the dissociation of 2-CTP. Specifically, water directly participates in the reaction through "water bridge", enabling a barrier-free process. This research provides molecular-level insights into the heterogeneous generation of dioxins with the catalysis of metal oxides in fly ash from static and dynamic aspects, providing novel approaches for reducing dioxin emissions and establishing dioxin control strategies.

2.
J Headache Pain ; 25(1): 57, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627638

RESUMO

BACKGROUND: Rimegepant orally disintegrating tablet (ODT), an oral small-molecule calcitonin gene-related peptide receptor antagonist, is indicated for acute and preventive treatment of migraine in the United States and other countries. Previously, a large clinical trial assessed the efficacy and safety of rimegepant ODT 75 mg for the acute treatment of migraine in adults living in China or South Korea. A post hoc subgroup analysis of this trial was performed to evaluate the efficacy and safety of rimegepant for acute treatment of migraine in adults living in China. METHODS: Eligible participants were ≥ 18 years of age and had a ≥ 1-year history of migraine, with 2 to 8 attacks of moderate or severe pain intensity per month and < 15 headache days per month during the 3 months before screening. Participants self-administered rimegepant ODT 75 mg or matching placebo to treat a single migraine attack of moderate or severe pain intensity. The co-primary endpoints were pain freedom and freedom from the most bothersome symptom (MBS) at 2 h post-dose. Key secondary endpoints included pain relief at 2 h post-dose, ability to function normally at 2 h post-dose, use of rescue medication within 24 h post-dose, and sustained pain freedom from 2 to 24 h and 2 to 48 h post-dose. All p values were nominal. Safety was assessed via treatment-emergent adverse events (TEAEs), electrocardiograms, vital signs, and routine laboratory tests. RESULTS: Overall, 1075 participants (rimegepant, n = 538; placebo, n = 537) were included in the subgroup analysis. Rimegepant was more effective than placebo for the co-primary endpoints of pain freedom (18.2% vs. 10.6%, p = 0.0004) and freedom from the MBS (48.0% vs. 31.8%, p <  0.0001), as well as all key secondary endpoints. The incidence of TEAEs was comparable between the rimegepant (15.2%) and placebo (16.4%) groups. No signal of drug-induced liver injury was observed, and no study drug-related serious TEAEs were reported in the rimegepant group. CONCLUSIONS: A single dose of rimegepant 75 mg rimegepant was effective for the acute treatment of migraine in adults living in China, with safety and tolerability similar to placebo. TRIAL REGISTRATION: Clinicaltrials.gov NCT04574362 Date registered: 2020-10-05.


Assuntos
Transtornos de Enxaqueca , Piperidinas , Piridinas , Adulto , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/diagnóstico , Dor , Método Duplo-Cego , Comprimidos/uso terapêutico , China , Resultado do Tratamento
3.
Small ; : e2400095, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529761

RESUMO

Rare earth microalloying nanocrystals have gotten widespread attention due to their unprecedented performances with customization-defected nanostructures, divided energy bands, and ensembled surface chemistry, regarded as a class of ideal electrocatalysts for oxygen evolution reaction (OER). Herein, a lanthanide microalloying strategy is proposed to fabricate strain wave-featured LaRuIr nanocrystals with oxide skin through a rapid crystal nucleation, using thermally assisted sodium borohydride reduction in aqueous solution at 60 °C. The atomic strain waves with alternating compressive and tensile strains, resulting from La-stabilized edge dislocations in form of Cottrell atmospheres. In 0.5 m H2SO4, the LaRuIr displays an overpotential of 184 mV at 10 mA cm-2, running at a steadily cell voltage for 60 h at 50 mA cm-2, eightfold enhancement of IrO2||Pt/C assemble in PEMWE. The coupled compressive and tensile profiles boost the OER kinetics via faster AEM and LOM pathways. Moreover, the tensile facilitates surface structure stabilization through dynamic refilling of lattice oxygen vacancies by the adsorbed oxyanions on La, Ru, and Ir sites, eventually achieving a long-term stability. This work contributes to developing advanced catalysts with unique strain to realize simultaneous improvement of activity and durability by breaking the so-called seesaw relationship between them during OER for water splitting.

4.
Ecotoxicol Environ Saf ; 274: 116186, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471341

RESUMO

Copper plays a crucial role in the heterogenous dissociation of chlorothiophenols (CTPs) to form chlorothiophenoxy radicals (CTPRs), which is the initial and critical step in the formation of polychlorinated thianthrenes/dibenzothiophenes (PCTA/DTs). Here, first-principles calculations were performed to investigate the activity of Cu(111) surface towards the formation of adsorbed 2-CTPR from 2-CTP. The interaction between 2-CTP and Cu(111) surface was explored to find stable adsorption configurations. Besides, the decomposition routes of 2-CTP on the Cu(111) surface were further explored. Moreover, the effects of water on the formation of absorbed 2-CTPR on the Cu(111) surface were examined. Our results demonstrate that the flat adsorption of 2-CTP on the surface with adsorption energy in the range of -33.21 kcal/mol to -28.37 kcal/mol is more stable than the vertical adsorption with adsorption energy ranging from -23.53 kcal/mol to -13.38 kcal/mol. The Cu(111) surface catalyzes the conversion of 2-CTP into the adsorbed 2-CTPR with a modest energy barrier of 9.46 kcal/mol. Furthermore, water molecules exhibit stronger catalytic activity in this process with a decreased energy barrier of 5.87 kcal/mol through "water bridge" and hydrogen bonding. Specifically, the water accepts the hydrogen atom from 2-CTP and donates another hydrogen to the surface via "water bridge". This research provides a molecular-level understanding of the heterogeneous formation of PCTA/DTs by fly ash, suggesting novel approaches for control strategy and legislation of dioxin analogues.


Assuntos
Cinza de Carvão , Cobre , Tiofenos , Teoria da Densidade Funcional , Hidrogênio , Água
5.
Small ; : e2400754, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385815

RESUMO

Metal-doped ruthenium oxides with low prices have gained widespread attention due to their editable compositions, distorted structures, and diverse morphologies for electrocatalysis. However, the mainstream challenge lies in breaking the so-called seesaw relationship between activity and stability during acidic oxygen evolution reaction (OER). Herein, strain wave-featured Mn-RuO2 nanowires (NWs) with asymmetric Ru-O-Mn bonds are first fabricated by thermally driven rapid solid phase conversion from RuMn alloy nanoparticles (NPs) at moderate temperature (450 °C). In 0.5 M H2 SO4 , the resultant NWs display a surprisingly ultralow overpotential of 168 mV at 10 mA cm-2 and run at a stable cell voltage (1.67 V) for 150 h at 50 mA cm-2 in PEMWE, far exceeding IrO2 ||Pt/C assemble. The simultaneous enhancement of both activity and stability stems from the presence of dense strain waves composed of alternating compressive and tensile ones in the distorted NWs, which collaboratively activate the Ru-O-Mn sites for faster OER. More importantly, the atomic strain waves trigger dynamic Ru-O-Mn regeneration via the refilling of oxygen vacancies by oxyanions adsorbed on adjacent Mn and Ru sites, achieving long-term stability. This work opens a door to designing non-precious metal-assisted ruthenium oxides with unique strains for practical application in commercial PEMWE.

6.
ACS Appl Mater Interfaces ; 15(46): 53714-53724, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37935591

RESUMO

ZSM-5 zeolite is usually used in gas sensors as an auxiliary material to improve the gas-sensitive properties of other semiconductor materials, such as its molecular sieve properties and surface adsorption properties. Here, the gas-sensitive mechanism analysis of SnO2/zeolite gas sensors is studied for the first time based on the perspective of zeolite as a band gap-tunable semiconductor that was reported recently. The gas-sensing mechanism of the zeolite/semiconductor has been modeled based on the surface charge theory, and the work function of the ZSM-5 zeolite has been revealed for the first time. A heterostructure of Ag and ZSM-5 was designed and compounded to tune the band gap of the ZSM-5 zeolite by the ammonia pool effect method. The band gap width of the zeolite decreases from 4.51 to 3.61 eV. A series of characterization techniques were used to analyze the distribution and morphology of silver nanoparticles in zeolites and the variation of the ZSM-5 band gap. Then, SnO2/Ag@ZSM-5 sensors were fabricated, and the gas-sensing performances were measured. The gas-sensing results show that the SnO2/Ag@ZSM-5 sensor has an improved response to formaldehyde in particular compared to the SnO2 sensor. The response value of the SnO2/Ag@ZSM-5 sensor to 70 ppm formaldehyde reached 29.4, which is a 528% improvement compared to the SnO2 sensor. Additionally, the selectivity was greatly enhanced. This study provides a strategy for designing and developing higher-performance gas sensors.

7.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631657

RESUMO

In laser active detection, detection performance is affected by optical noise, laser interference, and environmental background interference. Conventional methods to filter optical noise take advantage of the differences between signal and noise in wavelength and polarization. Due to the limitations of traditional methods in the physical dimension, noise cannot be completely filtered out. In this manuscript, a new method of noise filtering based on the spatial distribution difference between the quantum orbital angular momentum beam and the background noise is proposed. The use of beams containing quantum orbital angular momentum can make the signal light have a new physical dimension and enrich the information of emitted light. We conduct a complete theoretical analysis and provide a proof-of-principle experiment. The experimental results are in good agreement with the theoretical analysis results, and there is a signal-to-noise ratio improvement of more than five times in laser active detection. Our method meets the urgent needs of laser active detection and can be applied in the field of high-quality target detection.

8.
Phys Chem Chem Phys ; 25(34): 23296-23305, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37609804

RESUMO

In the marine boundary layer (MBL), chlorine (Cl) and chlorine monoxide (ClO) are powerful oxidants with high concentrations. The gas-liquid interface is also ubiquitous in the MBL as a favorable site for atmospheric reactions. Understanding the role of water in Cl/ClO radical chemistry is essential for predicting their behavior in the atmosphere and developing effective strategies for mitigating their harmful effects. However, the research studies on the system of Cl/ClO radicals on the surface of water droplets are still insufficient. In previous studies, we have found unique results related to the hydroxyl radical at the interface using ab initio molecular dynamics (AIMD). In this work, we have used AIMD to investigate interactions between Cl/ClO radicals and water molecules at the gas-liquid interface. Radical mobility, radial distribution functions, coordination, and population analyses were conducted to investigate the surface preference, bonding pattern, and track Cl/ClO radicals in the water droplets. In addition, density functional theory (DFT) analysis was conducted to compare the results at the gas-liquid interface with those in the gas phase. We found that Cl/ClO radicals tend to remain near the gas-liquid interface in water droplet systems and outside of water clusters in gas phase systems. The ClO radical can form O*-H and Cl-O bonds with water molecules; however, neither the O*-O hemibond nor the Cl-H bond was detected in all systems. Different dominant structures were obtained for ClO in the interface and gas phase. The ClO radical can be bonded to one water molecule from its oxygen side, (H2O)0-Cl-O*-(H2O)1 at the interface, or to two water molecules from the chlorine and oxygen sides, (H2O)1-Cl-O*-(H2O)1 in the gas phase. Meanwhile, the Cl radical can only form a dominant structure like Cl*-(H2O)1 at the gas-liquid interface by making a Cl*-O hemibond. Providing a thorough explanation of the Cl/ClO radical behavior at the gas-liquid interface, this study will improve our understanding of the MBL's oxidizing capacity and pollution causes.

9.
Zhen Ci Yan Jiu ; 48(7): 643-9, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37518957

RESUMO

OBJECTIVE: To observe the effect of acupuncture of "Tianshu"(ST25) at different depths on colonic transportation function, expressions of colonic substance P (SP) and interstitial cells of Cajal (ICC) in rats with slow transit constipation (STC), so as to explore its mechanisms underlying improvement of STC.. METHODS: Fifty male Wistar rats were selected and randomly divided into control,STC model,conventional acupuncture,deep needling group 1 and deep needling group 2 groups,with 10 rats in each group.The STC model was established by gavage of 1 mg/mL compound diphenoxylate suspension (10 mg/kg), once every other day for 21 days, and rats of the control group were given the same dose of distilled water by gavage.EA (2 Hz, 2 mA) was applied to "Tianshu"(ST25), with the acupuncture needle inserted to a depth of 3 mm for rats of the conventional acupuncture group, 4.5 mm for those of deep needling group 1, and 10 mm for those of the deep needling group 2. The acupuncture needle was twirled for 1 min, then retained for 15 min each time, once a day for 15 consecutive days.Following modeling, rats of the 4 groups and the control group received gavage of active carbon 2 mL (100 g/L) for observing the excretion time of the first black stool grain to assess the intestinal transit function. The colonic myoelectric activities (frequency and amplitude) were recorded by using BIOPAC multichannel physiograph. The immunoactivity of SP and c-kit (a transmembrane protein kinase for identification of ICC) of colonic musculature was detected by immunohistochemistry. RESULTS: Compared with the control group,the time of excretion of the first black stool grain, and the amplitude of colonic electromyogram (EMG) were significantly increased (P<0.01), while the frequency of EMG, expressions of SP and c-kit (ICC) were significantly decreased in the model group (P<0.01). In contrast to the model group, both deep needling group 1 and 2 had a decrease in the time of excretion of the first black stool grain, and amplitude of intestinal EMG, and an increase of frequency of intestinal EMG, and immunoactivity of SP and c-kit (P<0.01). The effect of deep needling 2 is superior to that of deep needling 1 in reducing the time of excretion of the first black stool grain (P<0.05), lowering the amplitude of EMG of the gut smooth muscle (P<0.05) and in increasing the frequency of EMG (P<0.05) and the expressions of SP and c-kit (P<0.05). No significant changes were found in the levels of frequency and amplitude of EMG, and expressions of SP and c-kit after routine needling in comparison with the model group (P>0.05), except the excretion time of the first black stool grain (P<0.05). CONCLUSION: Deep needling at ST25 at depth of 4.5 mm and 10 mm,especially at depth of 10 mm,has a significant effect in promoting gut motility to ameliorate constipation in rats with STC, which may be related to its function in up-regulating the expressions of SP and ICC activity.


Assuntos
Pontos de Acupuntura , Constipação Intestinal , Animais , Masculino , Ratos , Colo , Constipação Intestinal/genética , Constipação Intestinal/terapia , Defecação , Proteínas Proto-Oncogênicas c-kit/genética , Ratos Wistar , Substância P/genética
10.
Epilepsy Behav ; 143: 109243, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182501

RESUMO

PURPOSE: This study evaluated medical students' knowledge and attitudes toward epilepsy and the influence of metacognition thereon. METHOD: Valid questionnaires were administered to medical students including undergraduate, professional postgraduate, and standardized residency training students (N = 503). The questionnaire had 4 parts: demographic information, knowledge of epilepsy, attitudes toward epilepsy, and metacognitive assessment. The Chinese Public Attitudes Toward Epilepsy scale and 30-Item Metacognition Questionnaire were used to assess attitudes and metacognition, respectively. RESULTS: Almost all participants had heard of epilepsy; 38.8% had witnessed a seizure and 25% were acquainted with a person with epilepsy. The proportion of correct answers to epilepsy-related knowledge ranged from 40.6% (Putting an object into the mouth of a person experiencing an epileptic seizure) to 97% (Convulsion is a symptom of epilepsy). However, knowledge of epilepsy was not able to affect attitudes toward epilepsy. Age, years of clinical experience, having witnessed a seizure, positive belief of worry, and need to control thinking were correlated with the different domains of attitude toward epilepsy. When participants were divided into 2 groups-i.e., those with high and low knowledge of epilepsy, participants in the former group who had a positive belief of worry or had not witnessed any seizures were more likely to have negative attitudes toward epilepsy. CONCLUSION: Medical students showed good awareness of the etiology and symptoms of epilepsy. Overall, attitudes toward epilepsy were negative. A positive belief of worry was associated with a more negative attitude toward epilepsy among respondents with greater knowledge of epilepsy.


Assuntos
Epilepsia , Metacognição , Estudantes de Medicina , Humanos , Conhecimentos, Atitudes e Prática em Saúde , Epilepsia/complicações , Epilepsia/psicologia , Convulsões , Inquéritos e Questionários
11.
J Environ Sci (China) ; 129: 189-201, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36804235

RESUMO

As an anticonvulsant, oxcarbazepine (OXC) has attracted considerable attention for its potential threat to aquatic organisms. Density functional theory has been used to study the mechanisms and kinetics of OXC degradation initiated by OH radicals in aqueous environment. A total of fourteen OH-addition pathways were investigated, and the addition to the C8 position of the right benzene ring was the most vulnerable pathway, resulting in the intermediate IM8. The H-abstraction reactions initiated by OH radicals were also explored, where the extraction site of the methylene group (C14) on the seven-member carbon heterocyclic ring was found to be the optimal path. The calculations show that the total rate constant of OXC with OH radicals is 9.47 × 109 (mol/L)-1sec-1, and the half-life time is 7.32 s at 298 K with the [·OH] of 10-11 mol/L. Moreover, the branch ratio values revealed that OH-addition (89.58%) shows more advantageous than H-abstraction (10.42%). To further understand the potential eco-toxicity of OXC and its transformation products to aquatic organisms, acute toxicity and chronic toxicity were evaluated using ECOSAR software. The toxicity assessment revealed that most degradation products such as OXC-2OH, OXC-4OH, OXC-1O-1OOH, and OXC-1OH' are innoxious to fish and daphnia. Conversely, green algae are more sensitive to these compounds. This study can provide an extensive investigation into the degradation of OXC by OH radicals and enrich the understanding of the aquatic oxidation processes of pharmaceuticals and personal care products (PPCPs).


Assuntos
Radical Hidroxila , Água , Animais , Oxcarbazepina/toxicidade , Cinética , Meia-Vida , Oxirredução
12.
Nat Commun ; 14(1): 751, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765049

RESUMO

Exploring efficient electrocatalysts with fundamental understanding of the reaction mechanism is imperative in CO2 electroreduction. However, the impact of sluggish water dissociation as proton source and the surface species in reaction are still unclear. Herein, we report a strategy of promoting protonation in CO2 electroreduction by implementing oxygen vacancy engineering on Bi2O2CO3 over which high Faradaic efficiency of formate (above 90%) and large partial current density (162 mA cm-2) are achieved. Systematic study reveals that the production rate of formate is mainly hampered by water dissociation, while the introduction of oxygen vacancy accelerates water dissociation kinetics by strengthening hydroxyl adsorption and reduces the energetic span of CO2 electroreduction. Moreover, CO3* involved in formate formation as the key surface species is clearly identified by electron spin resonance measurements and designed in situ Raman spectroscopy study combined with isotopic labelling. Coupled with photovoltaic device, the solar to formate energy conversion efficiency reaches as high as 13.3%.

13.
ACS Appl Mater Interfaces ; 15(8): 10858-10867, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802476

RESUMO

Lead-free perovskites have attracted increasing attention because they can address the toxicity and instability problems inherent to lead-halide perovskites. Furthermore, the nonlinear optical (NLO) properties of lead-free perovskites are rarely explored. Herein, we report significant NLO responses and defect-dependent NLO behavior of Cs2AgBiBr6. Specifically, a thin film of pristine Cs2AgBiBr6 exhibits strong reverse saturable absorption (RSA), while a film of Cs2AgBiBr6 with defects (denoted as Cs2AgBiBr6(D)) shows saturable absorption (SA). The nonlinear absorption coefficients are ca. 4.0 × 104 cm GW-1 (515 nm laser excitation) and 2.6 × 104 cm GW-1 (800 nm laser excitation) for Cs2AgBiBr6 and -2.0 × 104 cm GW-1 (515 nm laser excitation) and -7.1 × 103 cm GW-1 (800 nm laser excitation) for Cs2AgBiBr6(D). The optical limiting threshold of Cs2AgBiBr6 is 8.1 × 10-4 J cm-2 (515 nm laser excitation). The samples show excellent long-term performance stability in air. The RSA of pristine Cs2AgBiBr6 correlates with excited-state absorption (515 nm laser excitation) and excited-state absorption following two-photon absorption (800 nm laser excitation), while the defects in Cs2AgBiBr6(D) strengthen the ground-state depletion and Pauli blocking, resulting in SA.

14.
Chem Commun (Camb) ; 59(7): 924-927, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36597857

RESUMO

Atomic cobalt-nitrogen-carbon (Co-NC) material was synthesized using spent LiCoO2, and contained a heavy Co-N4 loading (1.42 at%). The synthesized Co-NC exhibited high oxygen reduction reaction activity (with onset and half-wave potentials of 0.97 V and 0.87 V, respectively) and robust Al-air battery performance, delivering a specific power of 121.3 mW cm-2.

15.
ACS Appl Mater Interfaces ; 15(1): 953-962, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576782

RESUMO

As efficient nonprecious metal catalysts for oxygen reduction reaction (ORR), Fe-N-C materials are one of the most promising alternatives to Pt-based catalysts for fuel cells and metal-air batteries. However, the intrinsically low density of key active sites like FeN4 moieties hampers their commercial applications. Herein, we provide a smart strategy to construct a candied haws-like Fe-N-C catalyst (CH-FeNC) with broadened carbon interplanar spacing (>4 Å), starting with trehalose as a structure-built brick coupled with a zinc-zeolite imidazole framework (ZIF-8) and polyaniline (PANI) and then followed by copyrolysis carbonization of them. The obtained CH-FeNC exhibits half-wave potentials of 0.92 and 0.90 V (vs RHE) before and after 10,000 cycles in 0.1 M KOH, which are superior to the 0.90 and 0.85 V obtained by commercial Pt/C for ORR. The power density of a homemade zinc-air battery equipped with the catalyst is up to 131 mW cm-2, greater than that of Pt/C (124 mW cm-2). The extended X-ray absorption fine structure (EXAFS) results and density functional theory (DFT) theoretical calculations reveal that there exists enriched zigzag or armchair edge-hosted FeN4 active sites, located at the abundant interface between carbon components in this composite. Furthermore, the unique broadened carbon interlayer spacing plays a key role in deciding the ORR rate in alkaline but not in acidic environments because there exists a fifth ligand of active Fe in the form of FeN4 centers coupled with SO42- and ClO4- from acids.

16.
Zhen Ci Yan Jiu ; 47(8): 710-4, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36036105

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) of bilateral "Tianshu"(ST25) at different frequencies on the first black stool discharge time, colonic electromyography (EMG) and immunoactivity of vasoactive intestinal peptide (VIP) and substance P (SP) in the colon tissue in rats with slow transit constipation (STC), so as to choose a better stimulating frequency in the treatment of STC. METHODS: A total of 50 male Wistar rats were randomized into control, model, 2 Hz-EA, 100 Hz- EA, and 2 Hz/100 Hz-EA groups, with 10 rats in each group. The STC model was established by intraperitoneal injection of compound diphenoxylate suspension fluid (10 mg/kg). EA was applied to bilateral ST25 for 30 min, once a day for 14 consecutive days. The discharge time for the first black stool was recorded after gavage of mixed suspension fluid of active carbon (2 mL) for assessing the gastrointestinal motility. The colonic EMG was recorded by using a pair of silver electrodes and bioelectric amplifier. The expression of SP and VIP in the colonic tissue was detected by immunohistochemistry. RESULTS: Following mode-ling, the colonic EMG amplitude, the discharge time for the first black stool and VIP immunoactivity were significantly increased (P<0.01), and the EMG frequency and SP immunoactivity were significantly decreased (P<0.01) in the model group compared with the control group. Compared with the model group, the increase of the discharge time for the first black stool, EMG amplitude and VIP immunoactivity, the decrease of EMG frequency and SP immunoactivity were reversed in the 3 EA groups (P<0.01, P<0.05). The therapeutic effect of 100 Hz-EA was notably weaker than that of both 2 Hz-EA and 2 Hz/100 Hz-EA in up-regulating EMG frequency and SP immunoactivity and in down-regulating the discharge time for the first black stool, EMG amplitude and VIP immunoactivity (P<0.05, P<0.01). There was no significant difference between the 2 Hz/100 Hz-EA and 2 Hz-EA groups (P>0.05). CONCLUSION: EA can accelerate colonic EMG activities, which may be associated with its functions in down-regulating VIP immunoactivity and up-regulating SP immunoactivity in the colonic tissues. The therapeutic effects of 2 Hz/100 Hz-EA and 2 Hz-EA are better than that of 100 Hz-EA.


Assuntos
Eletroacupuntura , Pontos de Acupuntura , Animais , Colo , Constipação Intestinal , Eletromiografia , Masculino , Ratos , Ratos Wistar , Substância P , Peptídeo Intestinal Vasoativo
17.
Front Plant Sci ; 13: 920522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845709

RESUMO

Preserving viable pollen is of great interest to breeders to maintain desirable germplasm for future inbreeding. Ultra-low temperature preservation of pollen is an effective and safe way for long-term storage of plant germplasm resources. In this study, we improved methods for the preservation of soybean pollen at ultra-low temperature. Soybean flowers at the initially-open stage were collected at 6-10 a.m. during the fully-bloom stage of soybean plants and were dehydrated for 10 h and then frozen and stored at -196 or -80°C. In vitro culture experiments showed that the viability of preserved pollen remained as high as about 90%. The off-season (local site Heihe) and off-site (Beijing, after long-distance express delivery from Heihe) hybridization verification was conducted, and no significant difference in true hybrid rate was founded between the preserved pollen and the fresh pollen. The ultra-low temperature preservation technology for soybean pollen could break the spatiotemporal limit of soybean hybridization and facilitate the development of engineered soybean breeding.

18.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682547

RESUMO

Chlorophenols (CPs) and phenol are abundant in thermal and combustion procedures, such as stack gas production, industrial incinerators, metal reclamation, etc., which are key precursors for the formation of polychlorinated naphthalenes (PCNs). CPs and phenol can react with H or OH radicals to form chlorophenoxy radicals (CPRs) and phenoxy radical (PhR). The self-condensation of CPRs or cross-condensation of PhR with CPRs is the initial and most important step for PCN formation. In this work, detailed thermodynamic and kinetic calculations were carried out to investigate the PCN formation mechanisms from PhR with 2-CPR/3-CPR. Several energetically advantageous formation pathways were obtained. The rate constants of key elementary steps were calculated over 600~1200 K using the canonical variational transition-state theory (CVT) with the small curvature tunneling (SCT) contribution method. The mechanisms were compared with the experimental observations and our previous works on the PCN formation from the self-condensation of 2-CPRs/3-CPRs. This study shows that naphthalene and 1-monochlorinated naphthalene (1-MCN) are the main PCN products from the cross-condensation of PhR with 2-CPR, and naphthalene and 2-monochlorinated naphthalene (2-MCN) are the main PCN products from the cross-condensation of PhR with 3-CPR. Pathways terminated with Cl elimination are preferred over those terminated with H elimination. PCN formation from the cross-condensation of PhR with 3-CPR can occur much easier than that from the cross-condensation of PhR with 2-CPR. This study, along with the study of PCN formation from the self-condensation 2-CPRs/3-CPRs, can provide reasonable explanations for the experimental observations that the formation potential of naphthalene is larger than that of 1-MCN using 2-CP as a precursor, and an almost equal yield of 1-MCN and 2-MCN can be produced with 3-CP as a precursor.


Assuntos
Clorofenóis , Naftalenos , Fenóis
19.
ACS Appl Mater Interfaces ; 14(16): 18393-18408, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35418225

RESUMO

A new type of nano-SnFe2O4 with stable lattice-oxygen and abundant surface defects anchored on ultra-thin graphene-like porous carbon networks (SFO@C) is prepared for the first time by an interesting freezing crystallization salt template method. The functional composite has excellent rate performance and long-term cycle stability for lithium-ion battery (LIB) anodes due to the stable structure, improved conductivity, and shortened migrating distance for lithium-ions, which are derived from the higher lattice-oxygen of SnFe2O4, abundant porous carbon networks and surface defects, and smaller nanoparticles. Under the ultra-high current density of 10, 15, and 20 A g-1 cycling for 1000 times, the SFO@C can provide high reversible capacities of 522.2, 362.5, and 361.1 mAh g-1, respectively. The lithium-ion storage mechanism of the composite was systematically studied for the first time by in situ X-ray diffraction (XRD), ex situ XRD and scanning electron microscopy (SEM), and density functional theory (DFT) calculations. The results indicate that the existence of Li2O and metallic Fe during the lithiation/delithiation process is a key reason for reducing the initial lithium-ion storage reversibility but increasing the rate performance and capacity stability in the subsequent cycles. DFT calculations show that lithium-ions are more easily adsorbed on the (111) crystal plane with a much lower adsorption energy of -7.61 eV than other planes, and the Fe element is the main acceptor of electrons. Moreover, the kinetics investigation indicates that the lithium-ion intercalation and deintercalation in SFO@C are mainly controlled by the pseudocapacitance behavior, which is favorable to enhancing the rate performance. The research provides a new strategy for designing LIB electrode materials with a stable structure and outstanding lithium-ion storage performance.

20.
Int J Biol Macromol ; 209(Pt B): 1771-1783, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472365

RESUMO

Hyperbranched polysaccharide from Pleurotus tuber-regium (PTR-HBPS) is a ß-glucan with high degree of branching (DB, 0.69) and a molecular weight (Mw) of 31.2 × 105 g/mol with mixed ß-1, 4/ß-1, 4, 6/ß-1, 6 glucosidic linkages. PTR-HBPS was depolymerized by cellulase and ß-glucosidase under optimized conditions to form PC (PTR-HBPS depolymerized by cellulase) and PG (PTR-HBPS depolymerized by ß-glucosidase) fractions with a minimum Mw of 2.74 × 105 and 3.98 × 105 g/mol, respectively. PC fractions had no significant changes for its primary structure in terms of glycosidic linkages, DB, and triple helical structure, while the DB of PG fractions was reduced to 0.63 with the loss of triple helical structure. Nanoparticles fabricated by PC fractions with zein showed better stability under different pH conditions. Enzymatic depolymerized low Mw ß-glucan derived from PTR-HBPS with similar structural characteristics as the native one has potential as nanocarriers for food bioactive substances.


Assuntos
Agaricales , Celulases , Pleurotus , Zeína , beta-Glucanas , Concentração de Íons de Hidrogênio , Pleurotus/química , beta-Glucanas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...