Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Zygote ; 32(2): 175-182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629180

RESUMO

Intracytoplasmic sperm injection (ICSI) is a technique that directly injects a single sperm into the cytoplasm of mature oocytes. Here, we explored the safety of single-sperm cryopreservation applied in ICSI. This retrospective study enrolled 186 couples undergoing ICSI-assisted pregnancy. Subjects were allocated to the fresh sperm (group A)/single-sperm cryopreservation (group B) groups based on sperm type, with their clinical baseline/pathological data documented. We used ICSI-compliant sperm for subsequent in vitro fertilization and followed up on all subjects. The recovery rate/cryosurvival rate/sperm motility of both groups, the pregnancy/outcome of women receiving embryo transfer, and the delivery mode/neonatal-related information of women with successful deliveries were recorded. The clinical pregnancy rate, cumulative clinical pregnancy rate, abortion rate, ectopic pregnancy rate, premature delivery rate, live birth delivery rate, neonatal birth defect rate, and average birth weight were analyzed. The two groups showed no significant differences in age, body mass index, ovulation induction regimen, sex hormone [anti-Müllerian hormone (AMH)/follicle-stimulating hormone (FSH)/luteinizing hormone (LH)] levels, or oocyte retrieval cycles. The sperm recovery rate (51.72%-100.00%) and resuscitation rate (62.09% ± 16.67%) in group B were higher; the sperm motility in the two groups demonstrated no significant difference and met the ICSI requirements. Group B exhibited an increased fertilization rate, decreased abortion rate, and increased safety versus group A. Compared with fresh sperm, the application of single-sperm cryopreservation in ICSI sensibly improved the fertilization rate and reduced the abortion rate, showing higher safety.


Assuntos
Criopreservação , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas , Motilidade dos Espermatozoides , Espermatozoides , Humanos , Injeções de Esperma Intracitoplásmicas/métodos , Feminino , Criopreservação/métodos , Masculino , Gravidez , Adulto , Estudos Retrospectivos , Espermatozoides/fisiologia , Preservação do Sêmen/métodos , Resultado da Gravidez , Transferência Embrionária/métodos , Fertilização in vitro/métodos
2.
J Thorac Imaging ; 39(3): 146-156, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36744945

RESUMO

PURPOSE: Shortened injection durations are not recommended in step-and-shoot coronary computed tomography angiography (CCTA). We aimed to evaluate the image quality of CCTA performed using bodyweight-adjusted iodinated contrast media (ICM) with different injection durations to generate an optimized ICM administration protocol to acquire convincible image quality in step-and-shoot CCTA. MATERIALS AND METHODS: A total of 200 consecutive patients with suspected coronary artery disease (CAD) were enrolled in group A (N=50, 350 mgI/mL, bodyweight×0.8 mL/kg with a 13-s injection duration), group B (N=50, 350 mgI/mL, bodyweight×0.9 mL/kg with a 13-s injection duration), group C (N=50, 350 mgI/mL, bodyweight×0.8 mL/kg with a 12-s injection duration), and group D (N=50, 320 mgI/mL, bodyweight×0.8 mL/kg with a 13-s injection duration). Patient characteristics, ICM administration protocols, quantitative computed tomography (CT) value measurements, and qualitative image scores were analyzed and compared among the groups. RESULTS: Groups A and D achieved the lowest ICM volume, saline volume, injection flow rate, and total iodine and iodine injection rates among the groups. All the CT values of the coronary arteries in all groups were >300 HU. All the observers' average scores exceeded three points. In group A, the CT values showed significant positive correlation with the iodine injection rate ( r =0.226, P <0.001), whereas the signal-to-noise ratio ( r =-0.004, P =0.927) and contrast-to-noise ratio ( r =-0.006, P =0.893) values were not. CONCLUSIONS: Bodyweight×0.8 mL/kg with a 13-second injection duration is a comprehensive option for step-and-shoot CCTA with improved image quality, and a 350 mgI/mL iodine concentration is preferred.

3.
Respir Res ; 24(1): 299, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017476

RESUMO

OBJECTIVES: Parametric response mapping (PRM) enables the evaluation of small airway disease (SAD) at the voxel level, but requires both inspiratory and expiratory chest CT scans. We hypothesize that deep learning PRM from inspiratory chest CT scans can effectively evaluate SAD in individuals with normal spirometry. METHODS: We included 537 participants with normal spirometry, a history of smoking or secondhand smoke exposure, and divided them into training, tuning, and test sets. A cascaded generative adversarial network generated expiratory CT from inspiratory CT, followed by a UNet-like network predicting PRM using real inspiratory CT and generated expiratory CT. The performance of the prediction is evaluated using SSIM, RMSE and dice coefficients. Pearson correlation evaluated the correlation between predicted and ground truth PRM. ROC curves evaluated predicted PRMfSAD (the volume percentage of functional small airway disease, fSAD) performance in stratifying SAD. RESULTS: Our method can generate expiratory CT of good quality (SSIM 0.86, RMSE 80.13 HU). The predicted PRM dice coefficients for normal lung, emphysema, and fSAD regions are 0.85, 0.63, and 0.51, respectively. The volume percentages of emphysema and fSAD showed good correlation between predicted and ground truth PRM (|r| were 0.97 and 0.64, respectively, p < 0.05). Predicted PRMfSAD showed good SAD stratification performance with ground truth PRMfSAD at thresholds of 15%, 20% and 25% (AUCs were 0.84, 0.78, and 0.84, respectively, p < 0.001). CONCLUSION: Our deep learning method generates high-quality PRM using inspiratory chest CT and effectively stratifies SAD in individuals with normal spirometry.


Assuntos
Asma , Aprendizado Profundo , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem
4.
Mol Cancer ; 22(1): 84, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37189103

RESUMO

BACKGROUND: Checkpoint blockade immunotherapy, represented by PD-1 or PD-L1 antibody treatment, has been of tremendous success in clinical practice. However, the low clinical response rate and lack of biomarkers for prediction of the immune response limit the clinical application of anti-PD-1 immunotherapy. Our recent work showed that a combination of low-dose decitabine and PD-1-ab significantly improved the complete response (CR) rate of cHL patients from 32 to 71%, which indicates that there is a significant correlation between epigenetic regulation and the clinical response to immunotherapy. METHODS: We recruited two groups of Hodgkin lymphoma patients who were treated with anti-PD-1 and DAC+anti-PD-1. CD8+ T cells were isolated from the patients' peripheral blood, DNA methylation was analyzed by EPIC, the expression profile was analyzed by RNA-seq, and multigroup analysis was performed with IPA and GSEA functional annotations. We explored the effect of DAC on the function of CD8+ T cells in the blood, spleen, tumor and lymph nodes using a mouse model. Furthermore, we explored the function of Tils in the tumor microenvironment. Then, we constructed Runx3-knockout mice to confirm the T-cell-specific function of Runx3 in CD8+ T cells and analyzed various subtypes of T cells and cytokines using mass cytometry (CyTOF). RESULTS: Multiomics analysis identified that DNA methylation reprogramming of Runx3 was a crucial mediator of CD8+ T-cell function. Multiomics data showed that reversal of methylation of the Runx3 promoter promoted the infiltration of CD8+ TILs and mitigated the exhaustion of CD8+ T cells. Furthermore, experiments on tissue-specific Runx3-knockout mice showed that Runx3 deficiency reduced CD8+ T infiltration and the differentiation of effector T and memory T cells. Furthermore, Runx3 deficiency significantly decreased CCR3 and CCR5 levels. Immunotherapy experiments in Runx3 conditional knockout mice showed that DAC could not reverse the resistance of anti-PD-1 in the absence of Runx3. Moreover, both our clinical data and data from TISIDB showed that Runx3 could be a potential biomarker for immunotherapy to predict the clinical response rate. CONCLUSION: We demonstrate that the DNA methylation of Runx3 plays a critical role in CD8+ T-cell infiltration and differentiation during decitabine-primed PD-1-ab immunotherapy, which provides a supporting mechanism for the essential role of epiregulation in immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Epigênese Genética , Animais , Camundongos , Decitabina/farmacologia , Imunoterapia , Biomarcadores/metabolismo , Metilação de DNA , Camundongos Knockout , Microambiente Tumoral
5.
Biology (Basel) ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979029

RESUMO

We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort (n = 135), validation cohort (n = 49), and internal testing cohort (n = 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.

6.
Acta Pharm Sin B ; 13(3): 903-915, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970213

RESUMO

We summarize the most important advances in RNA delivery and nanomedicine. We describe lipid nanoparticle-based RNA therapeutics and the impacts on the development of novel drugs. The fundamental properties of the key RNA members are described. We introduced recent advances in the nanoparticles to deliver RNA to defined targets, with a focus on lipid nanoparticles (LNPs). We review recent advances in biomedical therapy based on RNA drug delivery and state-of-the-art RNA application platforms, including the treatment of different types of cancer. This review presents an overview of current LNPs based RNA therapies in cancer treatment and provides deep insight into the development of future nanomedicines sophisticatedly combining the unparalleled functions of RNA therapeutics and nanotechnology.

7.
MedComm (2020) ; 4(1): e208, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36744219

RESUMO

The recent pandemic of variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for innovative anti-SARS-CoV-2 approaches in addition to vaccines and antiviral therapeutics. Here, we demonstrate that a CRISPR-Cas13-based strategy against SARS-CoV-2 can effectively degrade viral RNA. First, we conducted a cytological infection experiment, screened CRISPR-associated RNAs (crRNAs) targeting conserved regions of viruses, and used an in vitro system to validate functional crRNAs. Reprogrammed Cas13d effectors targeting NSP13, NSP14, and nucleocapsid transcripts achieved >99% silencing efficiency in human cells which are infected with coronavirus 2, including the emerging variants in the last 2 years, B.1, B.1.1.7 (Alpha), D614G B.1.351 (Beta), and B.1.617 (Delta). Furthermore, we conducted bioinformatics data analysis. We collected the sequence information of COVID-19 and its variants from China, and phylogenetic analysis revealed that these crRNA oligos could target almost 100% of the SARS-CoV family, including the emerging new variant, Omicron. The reprogrammed Cas13d exhibited high specificity, efficiency, and rapid deployment properties; therefore, it is promising for antiviral drug development. This system could possibly be used to protect against unexpected SARS-CoV-2 variants carrying multiple mutations.

8.
Eur J Radiol ; 159: 110684, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621209

RESUMO

PURPOSE: Individualized follow-up of pulmonary ground-glass nodules (GGNs) remains challenging in clinical practice. Accurate prediction of the growth or long-term stability of persistent GGNs is essential to optimize the follow-up intervals. METHODS: In this retrospective study, 253 patients with 1115 computed tomography (CT) images were recruited. In total, 1115 CT images were randomized into training (70%) and validation sets (30%). We developed models for the growth or long-term stable prediction of GGNs using radiomics and clinical features. We evaluated the prediction accuracy of the models using receiver operating characteristic (ROC) curve analysis, and the areas under the curve (AUCs) were established. The ROC curves of the models were compared using the DeLong method. RESULTS: The growth and stable groups contained 535 and 580 GGNs, respectively. Traditional radiographic features have limited value in the prediction of growth or long-term stability of GGNs. The prediction nomogram model combining radiomics and clinical features (size, location, and age) yielded the best AUC in both the training and validation sets (AUC = 0.843 and 0.824, respectively). The radiomics model outperformed the clinical model in both sets (AUC: 0.836 vs 0.772 and 0.818 vs 0.735, respectively). The radiomics signature and nomogram model achieved similar AUCs (Delong test, training set: P = 0.09; validation set: P = 0.37). CONCLUSIONS: We developed and validated a nomogram model combining radiomics signature, size, age, and location to predict the growth or long-term stability of GGNs. The model achieved good performance and may provide a basis for the improvement of follow-up management of GGNs.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nomogramas , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
9.
Cult Health Sex ; 25(1): 1-17, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34941479

RESUMO

Translated questionnaires are increasingly used in population health research. Nevertheless, translation is often not conducted with the same rigour as the process of survey development in the original language. This has serious limitations and may introduce bias in question relevance and meaning. This article describes and reflects on the process of translating a large and complex sexual and reproductive health survey from English into Simplified Chinese. We interrogated assumptions embedded in taken-for-granted translation practice to locate the sociocultural origins of these assumptions. We discuss how terminology and expression related to sexual and reproductive health may lose their conceptual or linguistic significance during translation in three different ways. Firstly, meanings can be lost in the negotiation of meanings associated with linguacultural and geographical variations of terminology. Secondly, meanings can be lost in the clash between everyday and professional sexual and reproductive health discourses. Thirdly, meanings can be lost due to the design of the source questionnaire and the intended mode of survey administration. We discuss ways to help overcome the unavoidable translation challenges that arise in the process of translating English sexual and reproductive health surveys for migrants from non-English speaking backgrounds.


Assuntos
Idioma , Saúde Reprodutiva , Humanos , Linguística , Tradução , Inquéritos e Questionários
10.
Front Med (Lausanne) ; 9: 939434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405608

RESUMO

Objective: This study aimed to assess the value of radiomics based on non-contrast computed tomography (NCCT) and contrast-enhanced computed tomography (CECT) images in the preoperative discrimination between lung invasive adenocarcinomas (IAC) and non-invasive adenocarcinomas (non-IAC). Methods: We enrolled 1,185 pulmonary nodules (478 non-IACs and 707 IACs) to build and validate radiomics models. An external testing set comprising 63 pulmonary nodules was collected to verify the generalization of the models. Radiomic features were extracted from both NCCT and CECT images. The predictive performance of radiomics models in the validation and external testing sets were evaluated and compared with radiologists' evaluations. The predictive performances of the radiomics models were also compared between three subgroups in the validation set (Group 1: solid nodules, Group 2: part-solid nodules, and Group 3: pure ground-glass nodules). Results: The NCCT, CECT, and combined models showed good ability to discriminate between IAC and non-IAC [respective areas under the curve (AUCs): validation set = 0.91, 0.90, and 0.91; Group 1 = 0.82, 0.79, and 0.81; Group 2 = 0.93, 0.92, and 0.93; and Group 3 = 0.90, 0.90, and 0.89]. In the external testing set, the AUC of the three models were 0.89, 0.91, and 0.89, respectively. The accuracies of these three models were comparable to those of the senior radiologist and better those that of the junior radiologist. Conclusion: Radiomic models based on CT images showed good predictive performance in discriminating between lung IAC and non-IAC, especially in part solid nodule group. However, radiomics based on CECT images provided no additional value compared to NCCT images.

11.
Signal Transduct Target Ther ; 7(1): 331, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123348

RESUMO

Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Antígeno CTLA-4/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos , Imunoterapia/métodos , Ipilimumab/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1
12.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954342

RESUMO

To investigate the value of the deep learning method in predicting the invasiveness of early lung adenocarcinoma based on irregularly sampled follow-up computed tomography (CT) scans. In total, 351 nodules were enrolled in the study. A new deep learning network based on temporal attention, named Visual Simple Temporal Attention (ViSTA), was proposed to process irregularly sampled follow-up CT scans. We conducted substantial experiments to investigate the supplemental value in predicting the invasiveness using serial CTs. A test set composed of 69 lung nodules was reviewed by three radiologists. The performance of the model and radiologists were compared and analyzed. We also performed a visual investigation to explore the inherent growth pattern of the early adenocarcinomas. Among counterpart models, ViSTA showed the best performance (AUC: 86.4% vs. 60.6%, 75.9%, 66.9%, 73.9%, 76.5%, 78.3%). ViSTA also outperformed the model based on Volume Doubling Time (AUC: 60.6%). ViSTA scored higher than two junior radiologists (accuracy of 81.2% vs. 75.4% and 71.0%) and came close to the senior radiologist (85.5%). Our proposed model using irregularly sampled follow-up CT scans achieved promising accuracy in evaluating the invasiveness of the early stage lung adenocarcinoma. Its performance is comparable with senior experts and better than junior experts and traditional deep learning models. With further validation, it can potentially be applied in clinical practice.

13.
Clin Transl Med ; 12(8): e1014, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998020

RESUMO

BACKGROUND: Cancer cell-specific variation and circulating tumour DNA (ctDNA) methylation are promising biomarkers for non-invasive cancer detection and molecular classification. Nevertheless, the applications of ctDNA to the early detection and screening of cancer remain highly challenging due to the scarcity of cancer cell-specific ctDNA, the low signal-to-noise ratio of DNA variation, and the lack of non-locus-specific DNA methylation technologies. METHODS: We enrolled three cohorts of breast cancer (BC) patients from two hospitals in China (BC: n = 123; healthy controls: n = 40). We developed a ctDNA whole-genome bisulfite sequencing technology employing robust trace ctDNA capture from up to 200 µL plasma, mini-input (1 ng) library preparation, unbiased genome-wide coverage and comprehensive computational methods. RESULTS: A diagnostic signature comprising 15 ctDNA methylation markers exhibited high accuracy in the early (area under the curve [AUC] of 0.967) and advanced (AUC of 0.971) BC stages in multicentre patient cohorts. Furthermore, we revealed a ctDNA methylation signature that discriminates estrogen receptor status (Training set: AUC of 0.984 and Test set: AUC of 0.780). Different cancer types, including hepatocellular carcinoma and lung cancer, could also be well distinguished. CONCLUSIONS: Our study provides a toolset to generate unbiased whole-genome ctDNA methylomes with a minimal amount of plasma to develop highly specific and sensitive biomarkers for the early diagnosis and molecular subtyping of cancer.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , Feminino , Humanos , Sulfitos
14.
Front Oncol ; 12: 900049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033463

RESUMO

Objective: To investigate whether radiomics can help radiologists and thoracic surgeons accurately predict invasive adenocarcinoma (IAC) manifesting as part-solid nodules (PSNs) with solid components <6 mm and provide a basis for rational clinical decision-making. Materials and Methods: In total, 1,210 patients (mean age ± standard deviation: 54.28 ± 11.38 years, 374 men and 836 women) from our hospital and another hospital with 1,248 PSNs pathologically diagnosed with adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or IAC were enrolled in this study. Among them, 1,050 cases from our hospital were randomly divided into a derivation set (n = 735) and an internal validation set (n = 315), 198 cases from another hospital were used for external validation. Each labeled nodule was segmented, and 105 radiomics features were extracted. Least absolute shrinkage and selection operator (LASSO) was used to calculate Rad-score and build the radiomics model. Multivariable logistic regression was conducted to identify the clinicoradiological predictors and establish the clinical-radiographic model. The combined model and predictive nomogram were developed based on identified clinicoradiological independent predictors and Rad-score using multivariable logistic regression analysis. The predictive performances of the three models were compared via receiver operating characteristic (ROC) curve analysis. Decision curve analysis (DCA) was performed on both the internal and external validation sets to evaluate the clinical utility of the nomogram. Results: The radiomics model showed superior predictive performance than the clinical-radiographic model in both internal and external validation sets (Az values, 0.884 vs. 0.810, p = 0.001; 0.924 vs. 0.855, p < 0.001, respectively). The combined model showed comparable predictive performance to the radiomics model (Az values, 0.887 vs. 0.884, p = 0.398; 0.917 vs. 0.924, p = 0.271, respectively). The clinical application value of the nomogram developed based on the Rad-score, maximum diameter, and lesion shape was confirmed, and DCA demonstrated that application of the Rad-score would be beneficial for radiologists predicting invasive lesions. Conclusions: Radiomics has the potential as an independent diagnostic tool to predict the invasiveness of PSNs with solid components <6 mm.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35862326

RESUMO

Noninvasively and accurately predicting the epidermal growth factor receptor (EGFR) mutation status is a clinically vital problem. Moreover, further identifying the most suspicious area related to the EGFR mutation status can guide the biopsy to avoid false negatives. Deep learning methods based on computed tomography (CT) images may improve the noninvasive prediction of EGFR mutation status and potentially help clinicians guide biopsies by visual methods. Inspired by the potential inherent links between EGFR mutation status and invasiveness information, we hypothesized that the predictive performance of a deep learning network can be improved through extra utilization of the invasiveness information. Here, we created a novel explainable transformer network for EGFR classification named gated multiple instance learning transformer (GMILT) by integrating multi-instance learning and discriminative weakly supervised feature learning. Pathological invasiveness information was first introduced into the multitask model as embeddings. GMILT was trained and validated on a total of 512 patients with adenocarcinoma and tested on three datasets (the internal test dataset, the external test dataset, and The Cancer Imaging Archive (TCIA) public dataset). The performance (area under the curve (AUC) = 0.772 on the internal test dataset) of GMILT exceeded that of previously published methods and radiomics-based methods (i.e., random forest and support vector machine) and attained a preferable generalization ability (AUC = 0.856 in the TCIA test dataset and AUC = 0.756 in the external dataset). A diameter-based subgroup analysis further verified the efficiency of our model (most of the AUCs exceeded 0.772) to noninvasively predict EGFR mutation status from computed tomography (CT) images. In addition, because our method also identified the "core area" of the most suspicious area related to the EGFR mutation status, it has the potential ability to guide biopsies.

16.
MedComm (2020) ; 3(3): e134, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35756163

RESUMO

The changes in circulating tumor DNA (ctDNA) methylation are believed to be early events in breast cancer initiation, which makes them suitable as promising biomarkers for early diagnosis. However, applying ctDNA in breast cancer early diagnosis remains highly challenging due to the contamination of background DNA from blood and low DNA methylation signals. Here, we report an improved way to extract ctDNA, reduce background contamination, and build a whole-genome bisulfite sequencing (WGBS) library from different stages of breast cancer. We first compared the DNA methylation data of 74 breast cancer patients with those of seven normal controls to screen candidate methylation CpG site biomarkers for breast cancer diagnosis. The obtained 26 candidate ctDNA methylation biomarkers produced high accuracy in breast cancer patients (area under the curve [AUC] = 0.889; sensitivity: 100%; specificity: 75%). Furthermore, we revealed potential ctDNA methylated CpG sites for detecting early-stage breast cancer (AUC = 0.783; sensitivity: 93.44%; specificity: 50%). In addition, different subtypes of breast cancer could be well distinguished by the ctDNA methylome, which was obtained through our improved ctDNA-WGBS method. Overall, we identified high specificity and sensitivity breast cancer-specific methylation CpG site biomarkers, and they will be expected to have the potential to be translated to clinical practice.

17.
Cancer Chemother Pharmacol ; 89(6): 825-831, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322287

RESUMO

PURPOSE: Copanlisib, a pan-PI3K inhibitor, has previously shown clinical efficacy and a tolerable safety profile in patients with indolent non-Hodgkin lymphoma. However, the pharmacokinetics, safety, tolerability, and efficacy of copanlisib in Chinese patients have not been reported. METHODS: This was a single-arm, open-label, phase I study of copanlisib in Chinese patients with relapsed or refractory indolent non-Hodgkin lymphoma (iNHL). Patients received a single intravenous 60 mg infusion of copanlisib over 1 h on days 1, 8, and 15 of a 28-day cycle, with 1 week of rest. Safety was monitored throughout the study, and plasma copanlisib levels were measured for pharmacokinetic analysis. Tumor response was determined by independent central radiologic review. RESULTS: Sixteen patients were enrolled and 13 were treated with 60 mg of copanlisib for a median of 15.0 weeks. With a Cmax of 566 µg/L and a AUC (0-24) of 1880 µg·h/L following single intravenous infusion, the pharmacokinetic parameters of copanlisib were consistent with that in previous studies, and no accumulation in plasma was observed. Treatment-emergent adverse events were reported for all 13 patients, the most common of which were hyperglycemia (100.0%), hypertension (76.9%), decreased neutrophil count (76.9%), and decreased white blood cell count (69.2%). Seven out of 12 evaluated patients achieved partial response, resulting in an overall response rate of 58.3% CONCLUSIONS: Copanlisib was well tolerated in Chinese patients with relapsed or refractory iNHL at the dose of 60 mg and demonstrated encouraging disease control, thus warranting further clinical investigation. CLINICAL TRIAL REGISTRATION NUMBER: NCT03498430 (April 13, 2018).


Assuntos
Linfoma não Hodgkin , Fosfatidilinositol 3-Quinases , China , Humanos , Linfoma não Hodgkin/tratamento farmacológico , Pirimidinas , Quinazolinas
18.
Front Oncol ; 12: 772770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186727

RESUMO

OBJECTIVES: EGFR testing is a mandatory step before targeted therapy for non-small cell lung cancer patients. Combining some quantifiable features to establish a predictive model of EGFR expression status, break the limitations of tissue biopsy. MATERIALS AND METHODS: We retrospectively analyzed 1074 patients of non-small cell lung cancer with complete reports of EGFR gene testing. Then manually segmented VOI, captured the clinicopathological features, analyzed traditional radiology features, and extracted radiomic, and deep learning features. The cases were randomly divided into training and test set. We carried out feature screening; then applied the light GBM algorithm, Resnet-101 algorithm, logistic regression to develop sole models, and fused models to predict EGFR mutation conditions. The efficiency of models was evaluated by ROC and PRC curves. RESULTS: We successfully established Modelclinical, Modelradiomic, ModelCNN (based on clinical-radiology, radiomic and deep learning features respectively), Modelradiomic+clinical (combining clinical-radiology and radiomic features), and ModelCNN+radiomic+clinical (combining clinical-radiology, radiomic, and deep learning features). Among the prediction models, ModelCNN+radiomic+clinical showed the highest performance, followed by ModelCNN, and then Modelradiomic+clinical. All three models were able to accurately predict EGFR mutation with AUC values of 0.751, 0.738, and 0.684, respectively. There was no significant difference in the AUC values between ModelCNN+radiomic+clinical and ModelCNN. Further analysis showed that ModelCNN+radiomic+clinical effectively improved the efficacy of Modelradiomic+clinical and showed better efficacy than ModelCNN. The inclusion of clinical-radiology features did not effectively improve the efficacy of Modelradiomic. CONCLUSIONS: Either deep learning or radiomic signature-based models can provide a fairly accurate non-invasive prediction of EGFR expression status. The model combined both features effectively enhanced the performance of radiomic models and provided marginal enhancement to deep learning models. Collectively, fusion models offer a novel and more reliable way of providing the efficacy of currently developed prediction models, and have far-reaching potential for the optimization of noninvasive EGFR mutation status prediction methods.

19.
Bioengineering (Basel) ; 10(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671582

RESUMO

This retrospective study aimed to predict the injury time of rib fractures in distinguishing fresh (30 days) or old (90 days) rib fractures. We enrolled 111 patients with chest trauma who had been scanned for rib fractures at our hospital between January 2018 and December 2018 using gemstone spectral imaging (GSI). The volume of interest of each broken end of the rib fractures was segmented using calcium-based material decomposition images derived from the GSI scans. The training and testing sets were randomly assigned in a 7:3 ratio. All cases were divided into groups distinguishing the injury time at 30 and 90 days. We constructed radiomics-based models to predict the injury time of rib fractures. The model performance was assessed by the area under the curve (AUC) obtained by the receiver operating characteristic analysis. We included 54 patients with 259 rib fracture segmentations (34 men; mean age, 52 years ± 12.02; and range, 19-72 years). Nine features were excluded by the least absolute shrinkage and selection operator logistic regression to build the radiomics signature. For distinguishing the injury time at 30 days, the Support Vector Machine (SVM) model and human-model collaboration resulted in an accuracy and AUC of 0.85 and 0.871 and 0.91 and 0.912, respectively, and 0.81 and 0.804 and 0.83 and 0.85, respectively, at 90 days in the testing set. The radiomics-based model displayed good accuracy in differentiating between the injury time of rib fractures at 30 and 90 days, and the human-model collaboration generated more accurate outcomes, which may help to add value to clinical practice and distinguish artificial injury in forensic medicine.

20.
Front Genet ; 12: 758103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868234

RESUMO

Background and purpose: Diagnosis of dementia with Lewy bodies (DLB) is highly challenging, primarily due to a lack of valid and reliable diagnostic tools. To date, there is no report of qualitative signature for the diagnosis of DLB. We aimed to develop a blood-based qualitative signature for differentiating DLB patients from healthy controls. Methods: The GSE120584 dataset was downloaded from the public database Gene Expression Omnibus (GEO). We combined multiple methods to select features based on the within-sample relative expression orderings (REOs) of microRNA (miRNA) pairs. Specifically, we first quickly selected miRNA pairs related to DLB by identifying reversal stable miRNA pairs. Then, an optimal miRNA pair subset was extracted by random forest (RF) and support vector machine-recursive feature elimination (SVM-RFE) methods. Furthermore, we applied logistic regression (LR) and SVM to build several prediction models. The model performance was assessed using the receiver operating characteristic curve (ROC) analysis. Lastly, we conducted bioinformatics analyses to explore the molecular mechanisms of the discovered miRNAs. Results: A qualitative signature consisted of 17 miRNA pairs and two clinical factors was identified for discriminating DLB patients from healthy controls. The signature is robust against experimental batch effects and applicable at the individual levels. The accuracies of the-signature-based models on the test set are 82.61 and 79.35%, respectively, indicating that the signature has acceptable discrimination performance. Moreover, bioinformatics analyses revealed that predicted target genes were enriched in 11 Go terms and 2 KEGG pathways. Moreover, five potential hub genes were found for DLB, including SRF, MAPK1, YWHAE, RPS6KA3, and KDM7A. Conclusion: This study provided a blood-based qualitative signature with the potential to be used as an effective tool to improve the accuracy of DLB diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...