Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(17): 4428-4431, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656520

RESUMO

Grover's search algorithm is a well-known quantum algorithm that has been extensively studied and improved to increase its success rate and enhance its flexibility. However, most improved search algorithms require an adjustment of the oracle, which may not be feasible in practical problem-solving scenarios. In this work, we report an experimental demonstration of a deterministic quantum search for multiple marked states without adjusting the oracle. A linear optical setup is designed to search for two marked states, one in a 16-state database with an initial equal-superposition state and the other in an 8-state database with different initial nonequal-superposition states. The evolution of the probability of finding each state in the database is also measured and displayed. Our experimental results agree well with the theoretical predictions, thereby proving the feasibility of the search protocol and the implementation scheme. This work is a pioneering experimental demonstration of deterministic quantum search for multiple marked states without adjusting the oracle.

2.
Opt Express ; 30(19): 34441-34452, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242456

RESUMO

Certifying quantum measurements is increasingly important for foundational insights in quantum information science. Here, we report an experimental certification of unknown quantum measurements in a semi-device-independent setting. For the first time, we experimentally demonstrate that genuine three-outcome positive operator-valued measures (POVMs) can be certified under the assumption of a limited overlap between the prepared quantum states. The generalized quantum measurements are realized through discrete-time quantum walk and our experimental results clearly show that three-outcome POVMs can be certified even in the presence of noise. Finally, we experimentally investigate that optimal POVMs for performing unambiguous state discrimination can be self-tested. Our work opens new avenues for robust certification of quantum systems in the prepare-and-measure scenario.

4.
J Chem Phys ; 155(5): 054305, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364348

RESUMO

Atomically precise metal nanoclusters, especially the metal nanoclusters with an exotic core structure, have given rise to a great deal of interest in catalysis, attributing to their well-defined structures at the atomic level and consequently unique electronic properties. Herein, the catalytic performances of three gold nanoclusters, such as Au38S2(S-Adm)20 with a body-centered cubic (bcc) kernel structure, Au30(S-Adm)18 with a hexagonal close-packed (hcp) core structure, and Au21(S-Adm)15 with a face-centered cubic (fcc) kernel structure, were attempted for the CO2 cycloaddition with epoxides toward cyclic carbonates. Due to the excess positive charge with a strong Lewis acidity and large chemical adsorption capacity, the bcc-Au38S2(S-Adm)20 nanocluster outperformed the hcp-Au30(S-Adm)18 and fcc-Au21(S-Adm)15 nanoclusters. Additionally, the synergistic effect between the gold nanocluster and co-catalyst played a crucial role in CO2 cycloaddition.

5.
Chemistry ; 27(45): 11539-11547, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34096132

RESUMO

Every atom of a heterogeneous catalyst can play a direct or indirect role in its overall catalytic properties. However, it is extremely challenging to determine explicitly which atom(s) of a catalyst can contribute most to its catalytic performance because the observed performance usually reflects an average of all the atoms in the catalyst. The emergence of atomically precise metal nanoclusters brings unprecedented opportunities to address these central issues, as the crystal structures of such nanoclusters have been solved, and hence very fundamental understanding of nanocatalysis can be attained at an atomic level. This minireview focuses on recent efforts to reveal the contributions of the internal atoms or vacancies of nanocluster catalysts to the catalytic processes, including how the catalytic activity can be dramatically changed by the central doping of a foreign atom, how catalytic activation and inactivation can be reversibly switched by shuttling the central atom into and out of nanoclusters, and how evolution in catalytic activity can be driven by structural periodicity in the inner kernels of the nanoclusters. We anticipate that progress in this research area could represent a novel conceptual framework for understanding the crucial roles of internal atoms of the catalysts in tuning the catalytic properties.

6.
Phys Rev Lett ; 126(21): 213603, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114879

RESUMO

In an atom interferometry experiment, the output phase shift depends on the wave vector of photons and the recoil momentum in optical transitions. This Letter puts forward a hypothesis that in light-atom interaction, the atom wave function could provide a transverse confinement to photons and thus could affect the mean recoil momentum. We propose a model to analyze the photon effective wave vector in a monochromatic optical field and calculate the relative shift of |k[over →]_{eff}| to k when an atom with a 3D Gaussian wave function absorbs one photon in a Gaussian beam. This shift could lead to a systematic effect related to the spatial distribution of atoms and the transverse beam profile in high-precision experiments based on atom interferometry.

7.
Chem Commun (Camb) ; 57(17): 2176-2179, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33524086

RESUMO

Here, we introduce two Au23 nanoclusters to unveil the significance of metal-ligand binding-induced assembly. The Au23 cluster protected by the thiolate ligand is packed in the shell-by-shell arrangement, while the Au23 cluster capped by dual ligands of thiolate and PPh3 is constructed from the assembly of Au4 tetrahedra. Furthermore Au23 from Au4 tetrahedron-based assembly is capable of converting absorbed visible light into more excitons, compared to Au23 from shell-by-shell assembly, thus exhibiting more efficient photocatalysis.

8.
Nanoscale ; 12(35): 18004-18012, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32870213

RESUMO

Atomically precise gold nanoclusters protected by ligands are being intensely investigated in current catalysis science, due to the definitive correlation between the catalytic properties and structures at an atomic level. By solving the crystal structures of the nanoclusters, coupled with in situ and ex situ spectroscopy, a very fundamental understanding can be achieved to learn what controls the catalytic activation, active site structure, and catalytic mechanism. Herein, we mainly focus on the recent progress in catalysis controlled by precisely modulating the surface structures of the nanoclusters, including the alteration of the surface motifs, the doping of heterogeneous atoms in the surface of the nanoclusters, and the surface ligand engineering. The article is expected to help not only gain deep insight into the crucial roles of surface motifs of the nanoclusters in regulating the catalytic properties, but also explore the wide catalytic applications of atomically precise nanoclusters by elaborately tailoring the surface of the nanoclusters.

9.
Chem Commun (Camb) ; 56(84): 12833-12836, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32966390

RESUMO

We report two ligand-protected Au4Ru2 and Au5Ru2 nanoclusters with distinct atomic-packing modes and electronic structures, both of which act as ideal model catalysts for identifying the catalytically active sites of catalysts on the nanoclusters. Au5Ru2 exhibits superior catalytic performances to Au4Ru2 for N-methylation of N-methylaniline to N-methylformanili, which is likely due to the site-cooperation catalysis of Au5Ru2.

10.
Angew Chem Int Ed Engl ; 59(47): 21135-21142, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32729214

RESUMO

The emergence of atomically precise metal nanoclusters with unique electronic structures provides access to currently inaccessible catalytic challenges at the single-electron level. We investigate the catalytic behavior of gold Au25 (SR)18 nanoclusters by monitoring an incoming and outgoing free valence electron of Au 6s1 . Distinct performances are revealed: Au25 (SR)18 - is generated upon donation of an electron to neutral Au25 (SR)18 0 and this is associated with a loss in reactivity, whereas Au25 (SR)18 + is generated from dislodgment of an electron from neutral Au25 (SR)18 0 with a loss in stability. The reactivity diversity of the three Au25 (SR)18 clusters stems from different affinities with reactants and the extent of intramolecular charge migration during the reactions, which are closely associated with the valence occupancies of the clusters varied by one electron. The stability difference in the three clusters is attributed to their different equilibria, which are established between the AuSR dissociation and polymerization influenced by one electron.

11.
Chem Sci ; 11(9): 2440-2447, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34084408

RESUMO

The surface plasmon resonance of metal nanoparticles has been widely used to improve photochemical transformations by plasmon-induced charge transfer. However, it remains elusive for the molecular-like metal clusters with non-metallic or excitonic behavior to enable light harvesting including electron/hole pair production and separation. Here we report a paradigm for solar energy conversion on an atomically precise Au4Ru2 cluster supported on TiO2 with oxygen vacancies, in which the electron-hole pairs can be directly generated from the excited Au4Ru2 cluster and the TiO2 support, and the photogenerated electrons can transfer to the Ru atoms. Importantly, the Ru atoms in the Au4Ru2 cluster are capable of injecting the electrons into adsorbed N2 to activate N2 molecules. The cooperative effect in the supported Au4Ru2 catalyst efficiently boosts the photocatalytic activity for N2 fixation in comparison with homogold (Au n ) clusters.

12.
Nat Commun ; 9(1): 3453, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150668

RESUMO

Engineering, controlling, and simulating quantum dynamics is a strenuous task. However, these techniques are crucial to develop quantum technologies, preserve quantum properties, and engineer decoherence. Earlier results have demonstrated reservoir engineering, construction of a quantum simulator for Markovian open systems, and controlled transition from Markovian to non-Markovian regime. Dephasing is an ubiquitous mechanism to degrade the performance of quantum computers. However, all-purpose quantum simulator for generic dephasing is still missing. Here, we demonstrate full experimental control of dephasing allowing us to implement arbitrary decoherence dynamics of a qubit. As examples, we use a photon to simulate the dynamics of a qubit coupled to an Ising chain in a transverse field and also demonstrate a simulation of nonpositive dynamical map. Our platform opens the possibility to simulate dephasing of any physical system and study fundamental questions on open quantum systems.

13.
Phys Rev Lett ; 121(6): 060506, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141679

RESUMO

It has been suggested that both quantum superpositions and nonlinear interactions are important resources for quantum metrology. However, to date the different roles that these two resources play in the precision enhancement are not well understood. Here, we experimentally demonstrate a Heisenberg-scaling metrology to measure the parameter governing the nonlinear coupling between two different optical modes. The intense mode with n (more than 10^{6} in our work) photons manifests its effect through the nonlinear interaction strength which is proportional to its average photon number. The superposition state of the weak mode, which contains only a single photon, is responsible for both the linear Hamiltonian and the scaling of the measurement precision. By properly preparing the initial state of single photon and making projective photon-counting measurements, the extracted classical Fisher information (FI) can saturate the quantum FI embedded in the combined state after coupling, which is ∼n^{2} and leads to a practical precision ≃1.2/n. Free from the utilization of entanglement, our work paves a way to realize Heisenberg-scaling precision when only a linear Hamiltonian is involved.

14.
Nat Commun ; 9(1): 93, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311543

RESUMO

Improving the precision of measurements is a significant scientific challenge. Previous works suggest that in a photon-coupling scenario the quantum fisher information shows a quantum-enhanced scaling of N2, which in theory allows a better-than-classical scaling in practical measurements. In this work, utilizing mixed states with a large uncertainty and a post-selection of an additional pure system, we present a scheme to extract this amount of quantum fisher information and experimentally attain a practical Heisenberg scaling. We performed a measurement of a single-photon's Kerr non-linearity with a Heisenberg scaling, where an ultra-small Kerr phase of ≃6 × 10-8 rad was observed with a precision of ≃3.6 × 10-10 rad. From the use of mixed states, the upper bound of quantum fisher information is improved to 2N2. Moreover, by using an imaginary weak-value the scheme is robust to noise originating from the self-phase modulation.

15.
Opt Express ; 25(3): 1778-1788, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519031

RESUMO

The inhomogeneous broadening of the bi-exciton state in quantum dots, i.e., the inhomogeneous broadening of the upper level of the cascade process, is not only a fundamental problem in quantum dots, but also closely related with the coherent control of this complex system and the quality of the entangled photon pairs, especially the time-bin entangled photon pairs. This inhomogeneous broadening is inherently a two-photon correlated phenomenon. In this work, we construct a genuine Franson-type nonlocal interference process to measure the inhomogeneous broadening of the bi-exciton state. The results show that the inhomogeneous broadening of the bi-exciton state is considerably smaller than that of the exciton state, that is why the entangled photon pairs can be generated by the cascade process in the quantum dot.

16.
J Nanosci Nanotechnol ; 16(5): 4692-700, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483809

RESUMO

Whether the catalysts of the high temperature reaction such methane oxidation coupling has a structure-sensitive catalytic behavior or not, it is discussed and confirmed the shape-specific impact on methane activity by designing the catalysts with different crystal facets exposed. CeO2 nanowires enclosed by {110} and {100} planes show the higher CH4 conversion and higher C2 hydrocarbons (C2H4 and C2H6) selectivity, compared with particle CeO2 rounded by {111} and {100} planes, suggesting that CeO2 (110) surface favors the activation of CH4. Encouraged by the result, to control facet-controlled synthesis of catalysts for tailoring the catalytic properties at high temperature, the CeO2 (110) surface is chosen as doped sites to form the doped catalyst such as Ca doped CeO2 nanowires for OCM reaction, enhancing C2 hydrocarbons selectivity dramatically and suppressing the deep oxidation product (CO and CO2) selectivity.

17.
Nat Commun ; 6: 8652, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468996

RESUMO

Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.

18.
Nanoscale ; 7(6): 2260-4, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25572794

RESUMO

The synergistic effects from combinations of each component's functionality in hybrid Sr-La2O3 nanofibers brought about an improved catalytic behaviour for oxidative coupling of methane carried out at high temperatures, which cannot be achieved over the conventional Sr doped La2O3 spherical catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA