Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4459, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915063

RESUMO

Members of the Klebsiella pneumoniae species complex frequently colonize the gut and colonization is associated with subsequent infection. To identify genes associated with progression from colonization to infection, we undertook a case-control comparative genomics study. Concordant cases (N = 85), where colonizing and invasive isolates were identical strain types, were matched to asymptomatically colonizing controls (N = 160). Thirty-seven genes are associated with infection, 27 of which remain significant following adjustment for patient variables and bacterial phylogeny. Infection-associated genes are not previously characterized virulence factors, but instead a diverse group of stress resistance, regulatory and antibiotic resistance genes, despite careful adjustment for antibiotic exposure. Many genes are plasmid borne, and for some, the relationship with infection is mediated by gut dominance. Five genes were validated in a geographically-independent cohort of colonized patients. This study identifies several genes reproducibly associated with progression to infection in patients colonized by diverse Klebsiella.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Genômica , Humanos , Klebsiella/genética , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Plasmídeos/genética
2.
mBio ; 12(4): e0111421, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34225485

RESUMO

Bloodstream infections (BSI) are a major public health burden due to high mortality rates and the cost of treatment. The impact of BSI is further compounded by a rise in antibiotic resistance among Gram-negative species associated with these infections. Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, Enterobacter hormaechei, Citrobacter freundii, and Acinetobacter baumannii are all common causes of BSI, which can be recapitulated in a murine model. The objective of this study was to characterize infection kinetics and bacterial replication rates during bacteremia for these six pathogens to gain a better understanding of bacterial physiology during infection. Temporal observations of bacterial burdens of the tested species demonstrated varied abilities to establish colonization in the spleen, liver, or kidney. K. pneumoniae and S. marcescens expanded rapidly in the liver and kidney, respectively. Other organisms, such as C. freundii and E. hormaechei, were steadily cleared from all three target organs throughout the infection. In situ replication rates measured by whole-genome sequencing of bacterial DNA recovered from murine spleens demonstrated that each species was capable of sustained replication at 24 h postinfection, and several species demonstrated <60-min generation times. The relatively short generation times observed in the spleen were in contrast to an overall decrease in bacterial burden for some species, suggesting that the rate of immune-mediated clearance exceeded replication. Furthermore, bacterial generation times measured in the murine spleen approximated those measured during growth in human serum cultures. Together, these findings provide insight into the infection kinetics of six medically important species during bacteremia. IMPORTANCE Bloodstream infections are a global public health problem. The goal of this work was to determine the replication characteristics of Gram-negative bacterial species in the host following bloodstream infection. The number of bacteria in major organs is likely determined by a balance between replication rates and the ability of the host to clear bacteria. We selected a cohort of six species from three families that represent common causative agents of bloodstream infections in humans and determined their replication rates in a murine bacteremia model. We found that the bacteria grow rapidly in the spleen, demonstrating that they can obtain the necessary nutrients for growth in this environment. However, the overall number of bacteria decreased in most cases, suggesting that killing of bacteria outpaces their growth. Through a better understanding of how bacteria replicate during bloodstream infections, we aim to gain insight into future means of combating these infections.


Assuntos
Bacteriemia/microbiologia , Carga Bacteriana/métodos , Replicação do DNA , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Negativas/sangue , Animais , Antibacterianos/farmacologia , Estudos de Coortes , Feminino , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana
3.
mSphere ; 6(3): e0050021, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34160234

RESUMO

Klebsiella pneumoniae and the closely related species K. variicola and K. quasipneumoniae are common causes of health care-associated infections, and patients frequently become infected with their intestinal colonizing strain. To assess the association between Klebsiella colonization density and subsequent infections, a case-control study was performed. A multiplex quantitative PCR (qPCR) assay was developed and validated to quantify Klebsiella (K. pneumoniae, K. variicola, and K. quasipneumoniae combined) relative to total bacterial DNA copies in rectal swabs. Cases of Klebsiella infection were identified based on clinical definitions and having a clinical culture isolate and a preceding or coincident colonization isolate with the same wzi capsular sequence type. Controls were colonized patients without subsequent infection and were matched 2:1 to cases based on age, sex, and rectal swab collection date. qPCR from rectal swab samples was used to measure the association between the relative abundance of Klebsiella and subsequent infections. The Klebsiella relative abundance by qPCR was highly correlated with 16S sequencing (ρ = 0.79; P < 0.001). The median Klebsiella relative abundance was higher in cases (15.7% [interquartile range {IQR}, 0.93 to 52.6%]) (n = 83) than in controls (1.01% [IQR, 0.02 to 12.8%]) (n = 155) (P < 0.0001). Adjusting for multiple clinical covariates using inverse probability of treatment weighting, a Klebsiella relative abundance of >22% was associated with infection overall (odds ratio [OR], 2.87 [95% confidence interval {CI}, 1.64 to 5.03]) (P = 0.0003) and with bacteremia in a secondary analysis (OR, 4.137 [95% CI, 1.448 to 11.818]) (P = 0.0084). Measurement of colonization density by qPCR could represent a novel approach to identify hospitalized patients at risk for Klebsiella infection. IMPORTANCE Colonization by bacterial pathogens often precedes infection and offers a window of opportunity to prevent these infections in the first place. Klebsiella colonization is significantly and reproducibly associated with subsequent infection; however, factors that enhance or mitigate this risk in individual patients are unclear. This study developed an assay to measure the density of Klebsiella colonization, relative to total fecal bacteria, in rectal swabs from hospitalized patients. Applying this assay to 238 colonized patients, a high Klebsiella density, defined as >22% of total bacteria, was significantly associated with subsequent infection. Based on widely available PCR technology, this type of assay could be deployed in clinical laboratories to identify patients at an increased risk of Klebsiella infections. As novel therapeutics are developed to eliminate pathogens from the gut microbiome, a rapid Klebsiella colonization density assay could identify patients who would benefit from this type of infection prevention intervention.


Assuntos
Intestinos/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella/genética , Idoso , Bacteriemia/microbiologia , Estudos de Casos e Controles , Infecção Hospitalar/microbiologia , DNA Bacteriano/genética , Feminino , Microbioma Gastrointestinal , Humanos , Klebsiella/classificação , Klebsiella/fisiologia , Infecções por Klebsiella/classificação , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Reto/microbiologia , Fatores de Risco
4.
mSphere ; 6(3): e0013221, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34160237

RESUMO

Klebsiella commonly colonizes the intestinal tract of hospitalized patients and is a leading cause of health care-associated infections. Colonization is associated with subsequent infection, but the factors determining this progression are unclear. A cohort study was performed, in which intensive care and hematology/oncology patients with Klebsiella colonization based on rectal swab culture were enrolled and monitored for infection for 90 days after a positive swab. Electronic medical records were analyzed for patient factors associated with subsequent infection, and variables of potential significance in a bivariable analysis were used to build a final multivariable model. Concordance between colonizing and infecting isolates was assessed by wzi capsular gene sequencing. Among 2,087 hospitalizations from 1,978 colonized patients, 90 cases of infection (4.3%) were identified. The mean time to infection was 20.6 ± 24.69 (range, 0 to 91; median, 11.5) days. Of 86 typed cases, 68 unique wzi types were identified, and 69 cases (80.2%) were colonized with an isolate of the same type prior to infection. Based on multivariable modeling, overall comorbidities, depression, and low albumin levels at the time of rectal swab collection were independently associated with subsequent Klebsiella infection (i.e., cases). Despite the high diversity of colonizing strains of Klebsiella, there is high concordance with subsequent infecting isolates, and progression to infection is relatively quick. Readily accessible data from the medical record could be used by clinicians to identify colonized patients at an increased risk of subsequent Klebsiella infection. IMPORTANCE Klebsiella is a leading cause of health care-associated infections. Patients who are intestinally colonized with Klebsiella are at a significantly increased risk of subsequent infection, but only a subset of colonized patients progress to disease. Colonization offers a potential window of opportunity to intervene and prevent these infections, if the patients at greatest risk could be identified. To identify patient factors associated with infection in colonized patients, we studied 1,978 colonized patients. We found that patients with a higher burden of underlying disease in general, depression in particular, and low albumin levels in a blood test were more likely to develop infection. However, these variables did not completely predict infection, suggesting that other host and microbial factors may also be important. The clinical variables associated with infection are readily available in the medical record and could serve as the foundation for developing an integrated risk assessment of Klebsiella infection in hospitalized patients.


Assuntos
Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/etiologia , Klebsiella pneumoniae/patogenicidade , Reto/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Comorbidade , Depressão/complicações , Feminino , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/microbiologia , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Infecções por Klebsiella/sangue , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/fisiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco
5.
mSphere ; 5(4)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699120

RESUMO

The Enterobacterales order of Gram-negative bacteria includes the common nosocomial pathogens Klebsiella pneumoniae, Escherichia coli, Serratia marcescens, and Enterobacter species. Intestinal domination by some colonizing bacterial taxa is associated with subsequent infection, but 16S rRNA gene sequencing is too costly and slow to be used in a clinical setting. The objectives of this study were to develop a PCR-based assay that can measure Enterobacterales density, validate it against 16S rRNA gene sequencing, and measure the association between Enterobacterales dominance and subsequent infection. Two quantitative PCR (qPCR) assays that were developed to quantify the absolute and relative abundance of Enterobacterales had good correlation with 16S rRNA sequence analysis (P < 0.0001). Using both PCR assays and 16S sequencing, a matched case-control study was performed comparing rectal swabs from hospitalized patients who later developed bloodstream, urinary tract, or respiratory Enterobacterales infections (n = 95) to swabs from patients who remained uninfected (n = 189). Enterobacterales abundance measured by sequencing was high in both cases and controls (means, 31.1% and 27.5%, respectively; P = 0.322). We observed an increased risk of infection that depended on both the absolute and relative abundance of Enterobacterales as measured by qPCR assay A (P = 0.012). After adjustment for albumin levels, central venous catheter presence, and use of cephalosporins at the time of swab collection, this association still approached significance (P = 0.061). These results demonstrate that using qPCR to measure intestinal colonization dominance is feasible, indicate that hospitalized patients have high levels of Enterobacterales colonization, and suggest that both relative and absolute abundance may be associated with subsequent infection.IMPORTANCE Increasing antibiotic resistance has resulted in infections that are life-threatening and difficult to treat. Interventions that prevent these infections, particularly without using antibiotics, could save lives. Intestinal colonization by pathogens, including vancomycin-resistant Enterococcus and carbapenem-resistant Enterobacteriaceae (part of the order Enterobacterales) is associated with subsequent infection, and increased colonization density is associated with increased infection risk. Therefore, colonization offers a window of opportunity for infection prevention if (i) there are rapid and inexpensive assays to detect colonization, (ii) there are safe and effective interventions, and (iii) the risk of infection outweighs the risk of the treatment. Fecal transplants are proof of principle that manipulating the microbiome can reduce such colonization and prevent infections. This study demonstrates the feasibility of implementing rapid and inexpensive assays to quantify colonization and measures the strength of association between Enterobacterales dominance and subsequent infection. The approach described here could be a valuable tool in the prevention of antibiotic-resistant infections.


Assuntos
Infecções por Enterobacteriaceae/etiologia , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/classificação , Enterobacteriaceae/patogenicidade , Hospitalização/estatística & dados numéricos , Intestinos/microbiologia , Adulto , Idoso , Estudos de Casos e Controles , Contagem de Colônia Microbiana , Infecção Hospitalar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Reto/microbiologia
6.
PLoS Pathog ; 15(8): e1008010, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31449551

RESUMO

Klebsiella pneumoniae (Kp), one of the most common causes of healthcare-associated infections, increases patient morbidity, mortality, and hospitalization costs. Kp must acquire nutrients from the host for successful infection; however, the host is able to prevent bacterial nutrient acquisition through multiple systems. This includes the innate immune protein lipocalin 2 (Lcn2), which prevents Kp iron acquisition. To identify novel Lcn2-dependent Kp factors that mediate evasion of nutritional immunity during lung infection, we undertook an InSeq study using a pool of >20,000 transposon mutants administered to Lcn2+/+ and Lcn2-/- mice. Comparing transposon mutant frequencies between mouse genotypes, we identified the Kp citrate synthase, GltA, as potentially interacting with Lcn2, and this novel finding was independently validated. Interestingly, in vitro studies suggest that this interaction is not direct. Given that GltA is involved in oxidative metabolism, we screened the ability of this mutant to use a variety of carbon and nitrogen sources. The results indicated that the gltA mutant has a distinct amino acid auxotrophy rendering it reliant upon glutamate family amino acids for growth. Deletion of Lcn2 from the host leads to increased amino acid levels in bronchioloalveolar lavage fluid, corresponding to increased fitness of the gltA mutant in vivo and ex vivo. Accordingly, addition of glutamate family amino acids to Lcn2+/+ bronchioloalveolar lavage fluid rescued growth of the gltA mutant. Using a variety of mouse models of infection, we show that GltA is an organ-specific fitness factor required for complete fitness in the spleen, liver, and gut, but dispensable in the bloodstream. Similar to bronchioloalveolar lavage fluid, addition of glutamate family amino acids to Lcn2+/+ organ lysates was sufficient to rescue the loss of gltA. Together, this study describes a critical role for GltA in Kp infection and provides unique insight into how metabolic flexibility impacts bacterial fitness during infection.


Assuntos
Citrato (si)-Sintase/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Lipocalina-2/metabolismo , Lipocalina-2/fisiologia , Animais , Citrato (si)-Sintase/genética , Modelos Animais de Doenças , Humanos , Infecções por Klebsiella/metabolismo , Klebsiella pneumoniae/enzimologia , Lipocalina-2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...