Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Probes ; 71: 101923, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517598

RESUMO

Lung cancer is one of the most common malignant tumors and has a poor prognosis and a low survival rate. Traditional treatments, such as radiotherapy and chemotherapy, still face some challenges because of high drug resistance and toxicity. Therefore, it is necessary to discover a new kind of targeted drug with low toxicity and high efficiency. CDK12 is a cell cycle-dependent kinase whose main function is to activate RNA polymerase II (RNAPII) and promote the transcriptional extension of RNA. However, the role and molecular mechanism of CDK12 in lung cancer are still unclear. In this study, the mutation and RNA-Seq data of CDK12 in lung adenocarcinoma and squamous cell carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database and analyzed with the custom scripts. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and cell colony formation assays. A subcutaneous tumor experiment in nude mice was used to examine the effects of CDK12 knockdown on the in vivo tumor growth of NSCLC cells. The cell cycle distribution and the apoptosis rate of lung cancer cells were assessed by flow cytometry. Regulation of TANK-binding kinase 1 (TBK1) by CDK12 was evaluated by quantitative PCR, immunoprecipitation and Western blot analysis. In this study we have analyzed the mutation and expression data of The Cancer Genome Atlas (TCGA) database and found that CDK12 is highly expressed in lung cancer tissues. Clinical correlation analysis showed that high expression of CDK12 in NSCLC reduces patient survival, but its high expression is only related to early tumor progression and has no significant correlation with late tumor progression and metastasis. Furthermore, we present evidence that CDK12 depletion in lung cancer cell lines not only leads to the inhibition of cell growth and induces apoptosis but also inhibits tumor growth of NSCLC cells in vivo. CDK12 positively regulates the expression of the oncogene TBK1 in lung cancer cells. These results revealed that CDK12 affects the progression of non-small cell lung cancer through positive regulation of TBK1 expression, suggesting that CDK12 might be a potential molecular target for the treatment of non-small cell lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Humanos
2.
Biosci Rep ; 40(10)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32985665

RESUMO

Transplantion of bone marrow-derived endothelial progenitor cells (EPCs) may be a novel treatment for deep venous thrombosis (DVT). The present study probed into the role of microRNA (miR)-361-5p in EPCs and DVT recanalization. EPCs were isolated from male Sprague-Dawley (SD) rats and identified using confocal microscopy and flow cytometry. The viability, migration and tube formation of EPCs were examined using MTT assay, wound-healing assay and tube formation assay, respectively. Target gene and potential binding sites between miR-361-5p and fibroblast growth factor 1 (FGF1) were predicted by StarBase and confirmed by dual-luciferase reporter assay. Relative expressions of miR-361-5p and FGF1 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. A DVT model in SD rats was established to investigate the role of EPC with miR-361-5p antagomir in DVT by Hematoxylin-Eosin (H&E) staining. EPC was identified as 87.1% positive for cluster of difference (CD)31, 2.17% positive for CD133, 85.6% positive for von Willebrand factor (vWF) and 94.8% positive for vascular endothelial growth factor receptor-2 (VEGFR2). MiR-361-5p antagomir promoted proliferation, migration and tube formation of EPCs and up-regulated FGF1 expression, thereby dissolving thrombus in the vein of DVT rats. FGF1 was the target of miR-361-5p, and overexpressed FGF1 reversed the effects of up-regulating miR-361-5p on suppressing EPCs. Down-regulation of miR-361-5p enhanced thrombus resolution in vivo and promoted EPC viability, migration and angiogenesis in vitro through targeting FGF1. Therefore, miR-361-5p may be a potential therapeutic target for DVT recanalization.


Assuntos
Antagomirs/administração & dosagem , Movimento Celular , Células Progenitoras Endoteliais/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica , Trombose Venosa/terapia , Animais , Antagomirs/genética , Antagomirs/metabolismo , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Células Progenitoras Endoteliais/patologia , Fator 1 de Crescimento de Fibroblastos/genética , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Ratos Sprague-Dawley , Transdução de Sinais , Trombose Venosa/genética , Trombose Venosa/metabolismo , Trombose Venosa/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA