Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850298

RESUMO

This polymer microstructure expands more available application, which is a milestone for the development of micro-electro-mechanical system devices towards intelligence and multifunction. Poor interface bonding between the polymer and Si or metal is a particular problem, which restricts the application and promotion of polymer materials. In this study, a transition strengthening layer is proposed to obtain a highly stable polymer microstructure by enhancing the interfacial adhesion strength. The transition strengthening layer is activated by a pushpin-like nano/microstructure array with micromachining technology. Given its good graphical qualities and compatibility, epoxy negative photoresist SU-8 is applied to evaluate the strengthened capabilities of the pushpin-like nano/microstructure array. The microstructure of SU-8 is prepared by the same processes, and then the adhesion strength between the SU-8 microstructure and various activated substrates is tested by the thrust tester. It was determined that SU-8 with an activated pushpin-like microstructure array possessed a highly stable adhesion ability, and its adhesion strength increased from 6.51 MPa to 15.42 MPa. With its ultrahigh stable adhesion ability, it has been applied in fabricating three typical microstructures (hollow square microstructure, gradually increasing adjacent periodic microstructure, and slender strip microstructures) and large-area SU-8 microstructures to evaluate the feasibility of the transition strengthening layer and repeatability and universality of the microfabrication processes. The drifting and gluing phenomenon are avoided by this method compared with the traditional design. The proposed pushpin-like nano/microstructure array is promising in enhancing the stability of polymer microstructures with a substrate.

2.
Adv Mater ; 35(9): e2208645, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36423901

RESUMO

Conventional engineered surfaces for fluid manipulation are hindered by the set wettability, and thus they can only achieve spontaneous transport of single-phase fluid, namely liquid or gas. Moreover, fluid transport systems that are robust to path defects have yet to be fully explored. Here, unprecedentedly, a universal wettability switching strategy is developed for achieving programmable directional transport of both droplets and subaqueous bubbles on a dumbbell-patterned functional surface (DPFS), featuring in strong robustness, high efficiency, and effective cost. By tuning the superwettability of DPFS through octadecyltrichlorosilane treatment and ultraviolet-C selective irradiation, the transport fluid can alternate between liquid and gas. The material's switchable superwettability regulates the fluid directed dynamics within the confined pattern, in which the sustaining fluid propelling relies on the surface energy difference between the starting and terminal sites. This enables the construction of multiple channels, which works synergistically with ultralow-volume-loss transport to impart the fluidic system with strong robustness against path defects. Underlying the completion of complex microfluidics tasks, spatially-selective cooling devices and subaqueous gas microreactors are successfully demonstrated. This energy-consumption-free fluid transport system opens a new avenue for on-chip programmable fluid manipulation, promoting innovative applications requiring rational control of two-phase fluid transport.

3.
Small Methods ; 6(12): e2200812, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310112

RESUMO

Numerous materials in micro- or nanoscale hierarchical structures with surface gradients serve as the enablers in directional liquid transportation. However, concurrent high-speed and long-range liquid transport is yet to be fully realized so far. Here, an overall-improved approach is achieved in both water transport distance and velocity aspects using a 2D periodic Janus gradient structure, which is inspired by the Janus-wettable desert beetle back, tapered asymmetric cacti spine, and periodic Nepenthes alata microcavity. This 2D channel can efficiently regulate the kinetics of liquid transport within its confined structure, in which the terminal potential well and periodic Janus topological structure enable sustaining water propelling through a long distance. In addition, the rapidly formed aqueous film facilitates a high initial momentum and fast transport of liquid droplets along the channel, achieving an averaged velocity of over 400 mm s-1 and a maximum normalized transport distance of 23.4 for a 3 µL droplet, as well as an ultralow liquid volume loss of 6.02% upon high-flux water transport. This scalable, controllable, and easy-fabricable 2D water transport system provides an insightful pathway in realizing high-performance water manipulation and possibly facilitates substantial innovative applications in multidisciplinary fields.


Assuntos
Cactaceae , Anormalidades Musculoesqueléticas , Gêmeos Unidos , Transporte Biológico , Anatomia Regional
4.
IEEE Trans Biomed Eng ; 66(12): 3480-3485, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30932818

RESUMO

OBJECTIVE: A minimally invasive hollow in-plane microneedle with a cladding structure is designed to improve the mechanical strength. METHODS: The traditional weak stack structure has been changed into a cladding structure, and the effectiveness has been validated through finite element analysis. The prototypes of the microneedles were batch manufactured by the integrated micromachining process with no need to assemble. RESULTS: Compared to our previously reported microneedle with the weak stack structure, the cladding microneedle in this paper shows 263% improvement in bonding strength (6.4±0.30 N) and 36.5% improvement in buckling strength (2.8±0.07 N). In addition, the fabricated microneedle will not fail during insertion into the fresh and dehydrated pig skin with a satisfying safety factor (1.55). CONCLUSION: A novel structure of hollow microneedle was developed and fabricated by microfabrication technology. The improvement in mechanical strength is obvious. SIGNIFICANCE: The microneedle has great mechanical property and good potential for wider applications in human skin.


Assuntos
Microinjeções/instrumentação , Agulhas , Animais , Desenho de Equipamento , Teste de Materiais , Fenômenos Mecânicos , Pele/química , Suínos
5.
Sci Rep ; 7: 45512, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361893

RESUMO

This paper presents a novel MEMS-based inertial microswitch design with multi-directional compact constraint structures for improving the shock-resistibility. Its shock-resistibility in the reverse-sensitive direction to ultra-high g acceleration (~hunderds of thousands) is simulated and analyzed. The dynamic response process indicates that in the designed inertial microswitch the proof mass weight G, the whole system's stiffness k and the gap x2 between the proof mass and reverse constraint blocks have significant effect on the shock-resistibility. The MEMS inertial microswitch micro-fabricated by surface micromachining has been evaluated using the drop hammer test. The maximum allowable reverse acceleration, which does not cause the spurious trigger, is defined as the reverse acceleration threshold (athr). Test results show that athr increases with the decrease of the gap x2, and the proposed microswitch tends to have a better shock-resistibility under smaller gap. The measured responses of the microswitches with and without constraint structure indicates that the device without constraint structure is prone to spurious trigger, while the designed constraint structures can effectively improve the shock-resistibility. In this paper, the method for improving the shock-resistibility and reducing the spurious trigger has been discussed.

6.
Sensors (Basel) ; 17(3)2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28272330

RESUMO

A novel micro-electro-mechanical systems (MEMS) inertial microswitch with a flexible contact-enhanced structure to extend the contact duration has been proposed in the present work. In order to investigate the stiffness k of the stationary electrodes, the stationary electrodes with different shapes, thickness h, width b, and length l were designed, analyzed, and simulated using ANSYS software. Both the analytical and the simulated results indicate that the stiffness k increases with thickness h and width b, while decreasing with an increase of length l, and it is related to the shape. The inertial micro-switches with different kinds of stationary electrodes were simulated using ANSYS software and fabricated using surface micromachining technology. The dynamic simulation indicates that the contact time will decrease with the increase of thickness h and width b, but increase with the length l, and it is related to the shape. As a result, the contact time decreases with the stiffness k of the stationary electrode. Furthermore, the simulated results reveal that the stiffness k changes more rapidly with h and l compared to b. However, overlarge dimension of the whole microswitch is contradicted with small footprint area expectation in the structure design. Therefore, it is unreasonable to extend the contact duration by increasing the length l excessively. Thus, the best and most convenient way to prolong the contact time is to reduce the thickness h of the stationary electrode while keeping the plane geometric structure of the inertial micro-switch unchanged. Finally, the fabricated micro-switches with different shapes of stationary electrodes have been evaluated by a standard dropping hammer system. The test maximum contact time under 288 g acceleration can reach 125 µs. It is shown that the test results are in accordance with the simulated results. The conclusions obtained in this work can provide guidance for the future design and fabrication of inertial microswitches.

7.
Comput Aided Surg ; 18(5-6): 154-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24063700

RESUMO

OBJECTIVE: To develop an image visualization system based on graphic processing unit (GPU) hardware acceleration for clinical use in hepatocellular carcinoma (HCC) interventional planning. METHODS: We developed a liver tumor planning tool to assist the physician in providing patient-specific analysis and visualization. We employed a spatial distance computation algorithm to determine the spatial location of tumors and their relation to the main hepatic vessels. GPU hardware acceleration was implemented for rapid calculation of the spatial distance from the tumor surface to the surrounding vascular territories. RESULTS: The algorithm for spatial distance provided an accurate minimum value for the distance from the tumor surface to the surrounding duct system as well as the region of interest (ROI). Analyzing the data (mean CPU time = 43.14 ± 29.34; mean GPU time = 0.41 ± 0.38) using an independent samples t-test, the result showed a remarkable difference (p < 0.001). Thus, GPU hardware acceleration performed the distance arithmetic at higher rates than conventional CPUs. CONCLUSIONS: The visual assistance tool performs as an intuitive and objective module in clinical cases, and is expected to help physicians achieve a more reliable treatment in liver tumor patients. As such, we believe it represents an improvement in image guided preoperative planning.


Assuntos
Técnicas de Ablação , Carcinoma Hepatocelular/diagnóstico , Gráficos por Computador , Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas/diagnóstico , Tomografia Computadorizada por Raios X , Adulto , Idoso , Algoritmos , Carcinoma Hepatocelular/cirurgia , Periféricos de Computador , Humanos , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Análise Espacial
8.
J Digit Imaging ; 25(6): 729-37, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22535192

RESUMO

The development cycle of an image-guided surgery navigation system is too long to meet current clinical needs. This paper presents an integrated system developed by the integration of two open-source software (IGSTK and MITK) to shorten the development cycle of the image-guided surgery navigation system and save human resources simultaneously. An image-guided surgery navigation system was established by connecting the two aforementioned open-source software libraries. It used the Medical Imaging Interaction Toolkit (MITK) as a framework providing image processing tools for the image-guided surgery navigation system of medical imaging software with a high degree of interaction and used the Image-Guided Surgery Toolkit (IGSTK) as a library that provided the basic components of the system for location, tracking, and registration. The electromagnetic tracking device was used to measure the real-time position of surgical tools and fiducials attached to the patient's anatomy. IGSTK was integrated into MITK; at the same time, the compatibility and the stability of this system were emphasized. Experiments showed that an integrated system of the image-guided surgery navigation system could be developed in 2 months. The integration of IGSTK into MITK is feasible. Several techniques for 3D reconstruction, geometric analysis, mesh generation, and surface data analysis for medical image analysis of MITK can connect with the techniques for location, tracking, and registration of IGSTK. This integration of advanced modalities can decrease software development time and emphasize the precision, safety, and robustness of the image-guided surgery navigation system.


Assuntos
Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos , Software , Cirurgia Assistida por Computador , Integração de Sistemas , Calibragem , Sistemas Computacionais , Apresentação de Dados , Sistemas de Gerenciamento de Base de Dados , Humanos , Armazenamento e Recuperação da Informação , Imagens de Fantasmas , Design de Software , Validação de Programas de Computador , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...