Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
In Silico Pharmacol ; 12(1): 6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38187876

RESUMO

Thyroid hormone (TH) plays a crucial role in regulating the metabolism in every cell and all organs in of the human body. TH also control the rate of calorie burning, body weight, and function of the heartbeat. Therefore, the aim of the present study is to investigate the role of phytocompounds from Brassica oleracea var. italic (Broccoli) against irregularities of TH biosynthesis (hyperthyroidism) through in silico molecular modelling. Initially, the genetic network was built with graph theoretical network analysis to find the right target to control excessive TH production. Based on the network analysis, the three-dimensional crystal structure of the mammalian enzyme lactoperoxidase (PDB id: 5ff1) was retrieved from the protein data bank (PDB), and the active site was predicted using BIOVIA Discovery studio. Sixty-three phytocompounds were selected from the IMPPAT database and other literature. Selected sixty-six phytocompounds were docked against lactoperoxidase enzyme and compared with the standard drug methimazole. Based on the docking scores and binding energies, the top three compounds, namely brassicoside (- 10.00 kcal × mol-1), 24-methylene-25-methylcholesterol (- 9.50 kcal × mol-1), 5-dehydroavenasterol (- 9.40 kcal × mol-1) along with standard drug methimazole (- 4.10 kcal × mol-1) were selected for further ADMET and molecular dynamics simulation analysis. The top-scored compounds were for their properties such as ADMET, physicochemical and drug-likeness. The molecular dynamics simulation analyses proved the stability of lactoperoxidase-ligand complexes. The intermolecular interaction assessed by the dynamic conditions paved the way to discover the bioactive compounds brassicoside, 24-methylene-25-methylcholesterol, and 5-dehydroavenasterol prevent the excessive production of thyroid hormones. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00180-2.

2.
Food Sci Biotechnol ; 33(2): 327-341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222910

RESUMO

This study was designed to optimize the ultrasound-assisted extraction (UAE) of bioactive chemicals from Hemidesmus indicus (L.) R.Br. through RSM (response surface methodology) and ANFIS (adaptive neuro-fuzzy inference system). The effect of four independent parameters, methanol concentration (X1: 55-65%), temperature (X2: 30-40 °C), time (X3: 15-20 min) and particle size (X4: 0.5-1.00 mm) at five levels (- 2 ,- 1, 0, + 1, + 2) with respect to dependent parameters, total polyphenols content (TP) (y1), total flavonoids content (TF) (y2), %DPPHsc (y3), %ABTSsc (y4) and %H2O2sc (y5) were selected. The optimal extraction condition was observed at X1 = 65%, X2 = 40 °C, X3 = 20 min and X4 = 0.5 mm; under this circumstance, y1 = 352.85 mg gallic acid equivalents (GA)/g, y2 = 300.204 mg rutin equivalents (RU)/g and their antioxidant potentials (y3 = 81.33%, y4 = 65.04%, and y5 = 71.01%) has been attained. ANFIS was used to compare and confirm the optimized extraction parameter values. Further, GC-MS and LC-MS were performed to investigate the bioactive chemicals present in the optimized extract. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01351-9.

3.
J Biomol Struct Dyn ; : 1-17, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37583290

RESUMO

Plants and phytocompounds gained more attention because of their unrivalled variety of chemical diversity. In this view, the present study was executed to predict the anticancer potential of Solanum torvum Swartz. fruits derived phytocompounds against one of the breast cancer target proteins (MAPK14, PDB ID: 5ETA, resolution: 2.80 Å) through pharmacoinformatics-based screening and molecular dynamics simulation tools. Initially, a graph theoretical network approach was used to visualize the genes, enzymes, and proteins involved in the signalling pathway of breast cancer and identify the significant target protein (MAPK14). A total of thirty-three active compounds were selected from S. torvum sw. through the IMPPAT database, and their structures were drawn by Chemsketch software. The drug-like behaviours of the compounds were assessed through pharmacokinetics and physicochemical characterization studies. Five compounds, namely chlorogenin (-10.90 kcal × mol-1), corosolic acid (-10.80 kcal × mol-1), solaspigenin (-10.80 kcal × mol-1), paniculogenin (-10.70 kcal × mol-1), spirostane-3,6-dione (-10.70 kcal × mol-1) exhibited top binding score against MAPK14, these are higher than that of the standard drug (Doxorubicin) (-8.60 kcal × mol-1). Additionally, the five top-binding compounds revealed better drug-likeness traits and the lowest toxicity profiles. MD simulation studies confirmed the stability of the top five scored compounds with the MAPK14 binding pockets. According to these findings, the selected five compounds might be used as significant MAPK14 inhibitors and can be used as new medicines for the treatment of breast cancer.Communicated by Ramaswamy H. Sarma.

4.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513386

RESUMO

Streptococcus mutans, a gram-positive oral pathogen, is the primary causative agent of dental caries. Biofilm formation, a critical characteristic of S. mutans, is regulated by quorum sensing (QS). This study aimed to utilize pharmacoinformatics techniques to screen and identify effective phytochemicals that can target specific proteins involved in the quorum sensing pathway of S. mutans. A computational approach involving homology modeling, model validation, molecular docking, and molecular dynamics (MD) simulation was employed. The 3D structures of the quorum sensing target proteins, namely SecA, SMU1784c, OppC, YidC2, CiaR, SpaR, and LepC, were modeled using SWISS-MODEL and validated using a Ramachandran plot. Metabolites from Azadirachta indica (Neem), Morinda citrifolia (Noni), and Salvadora persica (Miswak) were docked against these proteins using AutoDockTools. MD simulations were conducted to assess stable interactions between the highest-scoring ligands and the target proteins. Additionally, the ADMET properties of the ligands were evaluated using SwissADME and pkCSM tools. The results demonstrated that campesterol, meliantrol, stigmasterol, isofucosterol, and ursolic acid exhibited the strongest binding affinity for CiaR, LepC, OppC, SpaR, and Yidc2, respectively. Furthermore, citrostadienol showed the highest binding affinity for both SMU1784c and SecA. Notably, specific amino acid residues, including ASP86, ARG182, ILE179, GLU143, ASP237, PRO101, and VAL84 from CiaR, LepC, OppC, SecA, SMU1784c, SpaR, and YidC2, respectively, exhibited significant interactions with their respective ligands. While the docking study indicated favorable binding energies, the MD simulations and ADMET studies underscored the substantial binding affinity and stability of the ligands with the target proteins. However, further in vitro studies are necessary to validate the efficacy of these top hits against S. mutans.


Assuntos
Cárie Dentária , Percepção de Quorum , Humanos , Biofilmes , Streptococcus mutans , Simulação de Acoplamento Molecular , Ligantes , Cárie Dentária/tratamento farmacológico
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2571-2586, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37022437

RESUMO

Receptor-mediated drug delivery systems are a promising tool for targeting malignant cells to suppress/inhibit the malignancy without disturbing healthy cells. Protein-based nanocarrier systems possess numerous advantages for the delivery of variety of chemotherapeutics, including therapeutic peptides and genes. In the present work, glucose-conjugated camptothecin-loaded glutenin nanoparticles (Glu-CPT-glutenin NPs) were fabricated to deliver camptothecin to MCF-7 cells via GLUT-1 transporter protein. Initially, Glu-conjugated glutenin polymer was successfully synthesized through reductive amination reaction, and this was confirmed by FTIR and 13C-NMR. Then, camptothecin (CPT) was loaded into Glu-conjugated glutenin polymer forming Glu-CPT-glutenin NPs. The nanoparticles were studied for their drug releasing capacity, morphological shape, size, physical nature, and zeta potential. The fabricated Glu-CPT-glutenin NPs were found to be spherical in shape and amorphous in nature with 200-nm size range and a zeta potential of - 30 mV. Furthermore, MTT assay using Glu-CPT-glutenin NPs confirmed concentration-dependent cytotoxicity against MCF-7 cells after 24-h treatment, and IC50 was found to be 18.23 µg mL-1. In vitro cellular uptake study demonstrated that the Glu-CPT-glutenin NPs had enhanced endocytosis and delivered CPT in MCF-7 cells. A typical apoptotic morphological change of condensed nuclei and distorted membrane bodies was found after treatment with IC50 concentration of NPs. The released CPT from NPs also targeted mitochondria of MCF-7 cells, significantly increasing the level of reactive oxygen species and causing the damage of mitochondrial membrane integrity. These outcomes confirmed that the wheat glutenin can positively serve as a significant delivery vehicle and enhance the anticancer potential of this drug.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Camptotecina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Células MCF-7 , Polímeros/química , Polímeros/metabolismo , Linhagem Celular Tumoral
6.
J Mol Model ; 29(4): 87, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872402

RESUMO

CONTEXT: Lymphatic filariasis, generally called as elephantiasis, is a vector-borne infectious disease caused by the filarial nematodes, mainly Wuchereria bancrofti, Brugia malayi, and Brugia timori, which are transmitted through mosquitoes. The infection affects the normal flow of lymph leading to abnormal enlargement of body parts, severe pain, permanent disability, and social stigma. Due to the development of resistance as well as toxic effects, existing medicines for lymphatic filariasis are becoming ineffective in killing the adult worms. It is essential to search novel filaricidal drugs with new molecular targets. Asparaginyl-tRNA synthetase (PDB ID: 2XGT) belongs to the group of aminoacyl-tRNA synthetases that catalyze specific attachment of amino acids to their tRNA during protein biosynthesis. Plants and their extracts are well-known medicinal practice for the management of several parasitic infectious diseases including filarial infections. METHODS: In this study, asparaginyl-tRNA synthetase of Brugia malayi was used as a target to perform virtual screening of plant phytoconstituents of Vitex negundo from IMPPAT database, which exhibits anti-filarial and anti-helminthic properties. A total of sixty-eight compounds from Vitex negundo were docked against asparaginyl-tRNA synthetase using Autodock module of PyRx tool. Among the 68 compounds screened, 3 compounds, negundoside, myricetin, and nishindaside, exhibited a higher binding affinity compared to standard drugs. The pharmacokinetic and physicochemical prediction, stability of ligand-receptor complexes via molecular dynamics simulation, and density functionality theory were done further for the top-scored ligands with receptor.


Assuntos
Aspartato-tRNA Ligase , Filariose Linfática , Vitex , Animais , Aminoacil-RNA de Transferência
7.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557944

RESUMO

Endophytic fungi are a diverse group of microorganisms that colonize the inter- or intracellular spaces of plants and exhibit mutual benefits. Their interactions with the host plant and other microbiomes are multidimensional and play a crucial role in the production of secondary metabolites. We screened bioactive compounds present in the extracts of Aspergillus flavus, an endophytic fungus isolated from the roots of the medicinal grass Cynodon dactylon, for its anticancer potential. An in vitro analysis of the Ethyl acetate extract from A. flavus showed significant cytostatic effects (IC50: 16.25 µg/mL) against breast cancer cells (MCF-7). A morphological analysis of the cells and a flow cytometry of the cells with annexin V/Propidium Iodide suggested that the extract induced apoptosis in the MCF-7 cells. The extract of A. flavus increased reactive oxygen species (ROS) generation and caused a loss of mitochondrial membrane potential in MCF-7 cells. To identify the metabolites that might be responsible for the anticancer effect, the extract was subjected to a gas chromatography-mass spectrometry (GC-MS) analysis. Interestingly, nine phytochemicals that induced cytotoxicity in the breast cancer cell line were found in the extract. The in silico molecular docking and molecular dynamics simulation studies revealed that two compounds, 2,4,7-trinitrofluorenone and 3α, 5 α-cyclo-ergosta-7,9(11), 22t-triene-6beta-ol exhibited significant binding affinities (-9.20, and -9.50 Kcal/mol, respectively) against Bcl-2, along with binding stability and intermolecular interactions of its ligand-Bcl-2 complexes. Overall, the study found that the endophytic A. flavus from C. dactylon contains plant-like bioactive compounds that have a promising effect in breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Aspergillus flavus/metabolismo , Cynodon/metabolismo , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Fungos/química , Antineoplásicos/química
8.
Biomolecules ; 12(7)2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35883443

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that can cause acute and severe infections. Increasing resistance to antibiotics has given rise to the urgent need for an alternative antimicrobial agent. A promising strategy is the inhibition of iron sequestration in the bacteria. The current work aimed to screen for inhibitors of pyoverdine-mediated iron sequestration in P. aeruginosa. As a drug target, we choose l-ornithine-N5-monooxygenase (PvdA), an enzyme involved in the biosynthesis of pyoverdine that catalyzes the FAD-dependent hydroxylation of the side chain amine of ornithine. As drug repurposing is a fast and cost-efficient way of discovering new applications for known drugs, the approach may help to solve emerging clinical problems. In this study, we use data about molecules from drug banks for screening. A total of 15 drugs that are similar in structure to l-ornithine, the substrate of PvdA, and 30 drugs that are sub-structures of l-ornithine were virtually docked against PvdA. N-2-succinyl ornithine and cilazapril were found to be the top binders with a binding energy of -12.8 and -9.1 kcal mol-1, respectively. As the drug-likeness and ADME properties of the drugs were also found to be promising, molecular dynamics studies were performed to further confirm the stability of the complexes. The results of this in silico study indicate that N-2-succinyl ornithine could potentially be explored as a drug for the treatment of P. aeruginosa infections.


Assuntos
Oxigenases de Função Mista , Infecções por Pseudomonas , Reposicionamento de Medicamentos , Humanos , Ferro/metabolismo , Oxigenases de Função Mista/metabolismo , Ornitina/metabolismo , Pseudomonas aeruginosa/metabolismo
9.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884549

RESUMO

The current study focuses on developing a tumour-targeted functionalised nanocarrier that wraps hollow mesoporous silica nanoparticles. The guanidine carbonate and curcumin are immobilised on the surface of 3-aminopropyl-triethoxy silane (APTES)-decorated hollow mesoporous silica nanoparticles (HMSNP), as confirmed through XPS and NMR analysis. XPS analysis demonstrates that the shape of the hysteresis loops is modified and that pore volume and pore diameter are consequently decreased compared to control. Guanidine (85%) and guanidine-curcumin complex (90%) were successfully encapsulated in HMSNAP and showed a 90% effective and sustained release at pH 7.4 for up to 72 h. Acridine orange/ethidium bromide dual staining determined that GuC-HMNSAP induced more late apoptosis and necrosis at 48 and 72 h compared with Gu-HMNSAP-treated cells. Molecular investigation of guanidine-mediated apoptosis was analysed using western blotting. It was found that cleaved caspases, c-PARP, and GSK-3ß (Ser9) had increased activity in MCF-7 cells. GuC-HMSNAP increased the activity of phosphorylation of oncogenic proteins such as Akt (Ser473), c-Raf (Ser249), PDK1 (Ser241), PTEN (Ser380), and GSK-3ß (Ser9), thus inducing cell death in MCF-7 cells. Altogether, our findings confirm that GuC-HMNSAP induces cell death by precisely associating with tumour-suppressing proteins, which may lead to new therapeutic approaches for breast cancer therapy.

10.
Molecules ; 27(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744923

RESUMO

Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5-ligand complexes. Four bioactive molecules (Bufadienolide (-12.30 kcal mol-1), Stigmasterol (-11.40 kcal mol-1), Isovitexin (-11.20 kcal mol-1), and Apigetrin (-11.20 kcal mol-1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (-9.80 kcal mol-1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED.


Assuntos
Afrodisíacos , Disfunção Erétil , Mimosa , Afrodisíacos/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Disfunção Erétil/tratamento farmacológico , Humanos , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores da Fosfodiesterase 5/química
11.
Nanomaterials (Basel) ; 12(9)2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35564180

RESUMO

The main aims in the development of a novel drug delivery vehicle is to efficiently carry therapeutic drugs in the body's circulatory system and successfully deliver them to the targeted site as needed to safely achieve the desired therapeutic effect. In the present study, a passive targeted functionalised nanocarrier was fabricated or wrapped the hollow mesoporous silica nanoparticles with 3-aminopropyl triethoxysilane (APTES) to prepare APTES-coated hollow mesoporous silica nanoparticles (HMSNAP). A nitrogen sorption analysis confirmed that the shape of hysteresis loops is altered, and subsequently the pore volume and pore diameters of GaC-HMSNAP was reduced by around 56 and 37%, respectively, when compared with HMSNAP. The physico-chemical characterisation studies of fabricated HMSNAP, Ga-HMSNAP and GaC-HMSNAP have confirmed their stability. The drug release capacity of the fabricated Ga-HMSNAP and GaC-HMSNAP for delivery of gallium and curcumin was evaluated in the phosphate buffered saline (pH 3.0, 6.0 and 7.4). In an in silico molecular docking study of the gallium-curcumin complex in PDI, calnexin, HSP60, PDK, caspase 9, Akt1 and PTEN were found to be strong binding. In vitro antitumor activity of both Ga-HMSNAP and GaC-HMSNAP treated MCF-7 cells was investigated in a dose and time-dependent manner. The IC50 values of GaC-HMSNAP (25 µM) were significantly reduced when compared with free gallium concentration (40 µM). The mechanism of gallium-mediated apoptosis was analyzed through western blotting and GaC-HMSNAP has increased caspases 9, 6, cleaved caspase 6, PARP, and GSK 3ß(S9) in MCF-7 cells. Similarly, GaC-HMSNAP is reduced mitochondrial proteins such as prohibitin1, HSP60, and SOD1. The phosphorylation of oncogenic proteins such as Akt (S473), c-Raf (S249) PDK1 (S241) and induced cell death in MCF-7 cells. Furthermore, the findings revealed that Ga-HMSNAP and GaC-HMSNAP provide a controlled release of loaded gallium, curcumin and their complex. Altogether, our results depicted that GaC-HMNSAP induced cell death through the mitochondrial intrinsic cell death pathway, which could lead to novel therapeutic strategies for breast adenocarcinoma therapy.

12.
Prog Biomater ; 11(2): 229-241, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35622299

RESUMO

Recently the use of plant-derived extracts for the green synthesis of nanoparticles has drawn considerable attention. In the present study silver and copper nanoparticles were synthesized using extracts of Andrographis paniculata which is found to possess various pharmacological properties. The synthesized nanoparticles were characterized using UV spectroscopy, SEM with EDS, XRD, TEM and DLS. Furthermore, an attempt is made to impregnate these nanoparticles onto cotton bandages. The structure and morphology of silver nanoparticles impregnated onto the cotton bandages were confirmed by SEM. The anti-bacterial activity of cotton bandages loaded with silver and copper nanoparticles was tested against Escherichia coli, Bacillus cereus, and Staphylococcus aureus using a modified disc diffusion assay. The results indicate that the cotton bandages biofabricated with nanoparticles exhibited anti-bacterial activity in terms of zone of inhibition of growth of tested bacteria suggesting their usage as medical textiles in various biomedical applications for the prevention of infections. Hence, the nanoparticles impregnated cotton fibers can be applied for the development of masks, aprons, etc. to protect against bacterial penetration and as well to counteract the present situation of the world.

13.
Drug Res (Stuttg) ; 72(2): 72-81, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34666392

RESUMO

Ursolic acid (UA), a pentacyclic triterpenoid and a phytochemical, is a potent inhibitory agent against proliferation of various tumors. Polyhydroxybutyrate nanoparticles (PHB NPs) are preferred in therapeutics due to their drug-stabilizing property and enhanced biological activity. In this study, PHB NPs were utilized to deliver and enhance the bioavailability of UA against cancer cells (HeLa). Further, molecular docking and dynamic studies were conducted to calculate the binding affinity and stability of UA at the active site of target protein (epidermal growth factor receptor-EGFR). The PHB NPs revealed the average size as 150-200 nm in TEM, which were used in subsequent experiments. The cytoplasmic uptake of nanoparticles was confirmed by florescent microscopy. The encapsulation potential of PHB NPs with UA was assessed by UV-visible spectrophotometer as 54%. Besides, the drug release behavior, cytotoxicity and the regulation of apoptosis were investigated in vitro. The cytotoxicity results revealed that the maximum efficiency of drug delivery was at 96th hour.


Assuntos
Nanopartículas , Neoplasias , Triterpenos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Ácido Ursólico
14.
Bioimpacts ; 12(6): 487-499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644543

RESUMO

Introduction: Parkinson's disease (PD) is a chronic, devastating neurodegenerative disorder marked by the death of dopaminergic neurons in the midbrain's substantia nigra pars compacta (Snpc). In alpha-synuclein (α-Syn) self-aggregation, the existence of intracytoplasmic inclusion bodies called Lewy bodies (LBs) and Lewy neurites (LNs) causes PD, which is a cause of neuronal death. Methods: The present study is aimed at finding potential bioactive compounds from Cynodon dectylon that can degrade α-Syn aggregation in the brain, through in silico molecular docking investigations. Graph theoretical network analysis was used to identify the bioactive compounds that target α-Syn and decipher their network as a graph. From the data repository, twenty-nine bioactive chemicals from C. dactylon were chosen and their structures were retrieved from Pubchem. On the basis of their docking scores and binding energies, significant compounds were chosen for future investigation. The in silico prediction of chosen compounds, and their pharmacokinetic and physicochemical parameters were utilized to confirm their drug-likeness profile. Results: During molecular docking investigation the bioactive compounds vitexin (-7.3 kcal.mol-1) and homoorientin (-7.1 kcal.mol-1) showed significant binding energy against the α-Syn target protein. A computer investigation of molecular dynamics simulation study verifies the stability of the α-Syn-ligand complex. The intermolecular interactions assessed by the dynamic conditions indicate that the bioactive compound vitexin has the potency to prevent α-Syn aggregation. Conclusion: Interestingly, the observed results indicate that vitexin is a potential lead compound against α-Syn aggregation, and in vitro and in vivo studies are warranted to confirm the promising therapeutic capability.

15.
Sci Rep ; 11(1): 21488, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728718

RESUMO

Spice-rich recipes are referred to as "functional foods" because they include a variety of bioactive chemicals that have health-promoting properties, in addition to their nutritional value. Using pharmacoinformatics-based analysis, we explored the relevance of bioactive chemicals found in Rasam (a South Indian cuisine) against oxidative stress-induced human malignancies. The Rasam is composed of twelve main ingredients, each of which contains a variety of bioactive chemicals. Sixty-six bioactive compounds were found from these ingredients, and their structures were downloaded from Pubchem. To find the right target via graph theoretical analysis (mitogen-activated protein kinase 6 (MAPK6)) and decipher their signaling route, a network was built. Sixty-six bioactive compounds were used for in silico molecular docking study against MAPK6 and compared with known MAPK6 inhibitor drug (PD-173955). The top four compounds were chosen for further study based on their docking scores and binding energies. In silico analysis predicted ADMET and physicochemical properties of the selected compounds and were used to assess their drug-likeness. Molecular dynamics (MD) simulation modelling methodology was also used to analyse the effectiveness and safety profile of selected bioactive chemicals based on the docking score, as well as to assess the stability of the MAPK6-ligand complex. Surprisingly, the discovered docking scores against MAPK6 revealed that the selected bioactive chemicals exhibit varying binding ability ranges between - 3.5 and - 10.6 kcal mol-1. MD simulation validated the stability of four chemicals at the MAPK6 binding pockets, including Assafoetidinol A (ASA), Naringin (NAR), Rutin (RUT), and Tomatine (TOM). According to the results obtained, fifty of the sixty-six compounds showed higher binding energy (- 6.1 to - 10.6 kcal mol-1), and four of these compounds may be used as lead compounds to protect cells against oxidative stress-induced human malignancies.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional/métodos , Proteína Quinase 6 Ativada por Mitógeno/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Humanos , Estresse Oxidativo
16.
3 Biotech ; 11(5): 225, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968570

RESUMO

The aim of the current study is to ascertain the anticancer activity of exopolysaccharides (EPS) from probiotic Lactobacillus acidophilus in the 1, 2-dimethyl hydrazine (DMH)-induced colon cancer rat model and to determine the antioxidant status. Rats were divided into five groups of six animals each. Group I served as control, group II served as cancer control (DMH alone administered), group III as standard drug control (5-FU along with DMH) and group IV and V received EPS in two doses (200 mg/kg body weight and 400 mg/kg body weight along with DMH). EPS administration was found to reduce the number of polyps formed (Group IV-8.25 ± 1.258 and Group V-8.50 ± 1.732 vs Group II-14.50 ± 2.380) and to increase the levels of antioxidant enzymes viz. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and antioxidants like vitamin C (Vit. C), reduced glutathione (GSH) which was found to be reduced in colon cancer control rats. The status of lipid peroxidation (LPO) was also evaluated. All the values which were affected by the supplementation of DMH were brought to near normal levels by the treatment with EPS. The well-preserved histology of colon and the biochemical evaluation also show that EPS could be a potential agent for the prevention and treatment of colon cancer.

17.
Neurocirugía (Soc. Luso-Esp. Neurocir.) ; 32(2): 53-61, mar.- apr. 2021. tab
Artigo em Inglês | IBECS | ID: ibc-222442

RESUMO

Objectives To evaluate the efficacy of lumbo-peritoneal shunt (LPS) in patients of idiopathic intracranial hypertension presenting with visual symptoms. Methods Between Apr. 2014 and Mar. 2018, 70 patients of Idiopathic Intracranial Hypertension (IIH) underwent treatment at our institution. Patients were evaluated for neurological and ophthalmological status and were subjected to LPS depending on their symptoms. Results Mean opening pressure was 29.97 ± 5.33 cm of water and mean Body-Mass Index (BMI) was 26.51 ± 3 and the two were significantly correlated (p-value 0.006). All patients with visual symptoms (23) underwent LPS and others (47) were managed medically. All patients with LPS and 25 of medically managed patients improved, while 22 medically-managed patients required LPS due to deterioration in visual symptomatology. The proportion of patients showing complete resolution of features of IIH was significantly different between the three groups. Of the 7 patients with shunt extrusion/migration, only 2 required revision. Conclusion LPS is an equally effective and more technically familiar modality for treatment of IIH for neurosurgeons and should be offered to asymptomatic patients with objective visual signs. Shunt extrusion/migration may not always warrant revision due to “mini-shunt” that drains Cerebro-Spinal Fluid (CSF) through shunt tract even after extrusion (AU)


Evaluar la eficacia de la derivación lumboperitoneal (DLP) en pacientes con hipertensión intracraneal idiopática con síntomas visuales. Métodos Entre abril de 2014 y marzo de 2018, 70 pacientes con hipertensión intracraneal idiopática (HII) se sometieron a tratamiento en nuestra institución. Los pacientes se evaluaron para determinar el estado neurológico y oftalmológico y se sometieron a DLP en función de sus síntomas. Resultados La presión de apertura media fue de 29,97 ± 5,33 cm de agua y el índice de masa corporal (IMC) medio fue de 26,51 ± 3, y los 2 presentaron una correlación significativa (valor de p = 0,006). Todos los pacientes con síntomas visuales (23) se sometieron a DLP y otros (47) recibieron tratamiento farmacológico. Todos los pacientes con DLP y 23 de los pacientes que recibieron tratamiento farmacológico mejoraron, mientras que 22 pacientes con tratamiento farmacológico precisaron DLP debido al deterioro en la sintomatología visual. La proporción de los pacientes que mostró resolución completa de las características de la HII fue significativamente diferente entre los 3 grupos. De los 7 pacientes con extrusión/migración de la derivación, solo 2 precisaron revisión. Conclusión La DLP es una modalidad igual de eficaz y más familiar desde un punto de vista técnico para los neurocirujanos para el tratamiento de la HII y debe ofrecerse a los pacientes asintomáticos con signos visuales objetivos. La extrusión/migración de la derivación puede no justificar siempre una revisión debido a la «miniderivación» que drena el líquido cefalorraquídeo (LCR) a través del conducto de derivación incluso después de la extrusión (AU)


Assuntos
Humanos , Procedimentos Endovasculares , Internato e Residência , Procedimentos Neurocirúrgicos , Neurocirurgia/educação
18.
Infect Genet Evol ; 89: 104712, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422682

RESUMO

An immunoinformatics-based approach was used to identify potential multivalent subunit CTL vaccine candidates for SARS-CoV-2. Criteria for computational screening included antigen processing, antigenicity, allergenicity, and toxicity. A total of 2604 epitopes were found to be strong binders to MHC class I molecules when analyzed using IEDB tools. Further testing for antigen processing yielded 826 peptides of which 451 were 9-mers that were analyzed for potential antigenicity. Antigenic properties were predicted for 102 of the 451 peptides. Further assessment for potential allergenicity and toxicity narrowed the number of candidate CTL epitopes to 50 peptide sequences, 45 of which were present in all strains of SARS-CoV-2 that were tested. The predicted CTL epitopes were then tested to eliminate those with MHC class II binding potential, a property that could induce hyperinflammatory responses mediated by TH2 cells in immunized hosts. Eighteen of the 50 epitopes did not show class II binding potential. To our knowledge this is the first comprehensive analysis on the proteome of SARS-CoV-2 for prediction of CTL epitopes lacking binding properties that could stimulate unwanted TH2 responses. Future studies will be needed to assess these epitopes as multivalent subunit vaccine candidates which stimulate protective CTL responses against SARS-COV-2.


Assuntos
Vacinas contra COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Vacinas Combinadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Sequência de Aminoácidos , COVID-19/prevenção & controle , Epitopos de Linfócito T/química , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunogenicidade da Vacina/imunologia , Simulação de Acoplamento Molecular , Proteômica/métodos , Linfócitos T Citotóxicos/imunologia
19.
Infect Disord Drug Targets ; 21(3): 429-438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32568025

RESUMO

BACKGROUND: Dental caries is the most common and one of the prevalent diseases in the world. Streptococcus mutans is one of the major oral pathogens that cause dental caries by forming a biofilm on dental tissues, degrading dental enamel and consequent cavitation in the tissue. In vitro selection of drug targets is a laborious and expensive process and therefore, computational methods are preferable for target identification at the initial stage. OBJECTIVE: The present research aims to find new drug targets in S. mutans by using subtractive proteomics analysis, which implements various bioinformatics tools and databases. METHODS: The proteome of S. mutans UA159 was mined for novel drug targets using computational tools and databases such as: CD-HIT, BLASTP, DEG, KAAS and CELL2GO. RESULTS: Out of 1953 proteins of S. mutans UA159, proteins that are redundant, homologous to human and non-essential to the pathogen were eliminated. Around 178 proteins already available in drug target repositories were also eliminated. Possible functions and subcellular localization of 32 uncharacterized proteins were predicted. Substantially, 13 proteins were identified as novel drug targets in S. mutans UA159 that can be targeted by various drugs against dental caries. CONCLUSION: This study will effectuate the development of novel therapeutic agents against dental caries and other Streptococcal infections.


Assuntos
Streptococcus mutans , Biofilmes , Cárie Dentária/tratamento farmacológico , Humanos , Preparações Farmacêuticas , Proteoma
20.
3 Biotech ; 10(11): 479, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33088671

RESUMO

The complement system is a stakeholder of the innate and adaptive immune system and has evolved as a crucial player of defense with multifaceted biological effects. Activation of three complement pathways leads to consecutive enzyme reactions resulting in complement components (C3 and C5), activation of mast cells and neutrophils by anaphylatoxins (C3a and C5a), the formation of membrane attack complex (MAC) and end up with opsonization. However, the dysregulation of complement cascade leads to unsolicited cytokine storm, inflammation, deterioration of alveolar lining cells, culminating in acquired respiratory destructive syndrome (ARDS). Similar pathogenesis is observed with the middle east respiratory syndrome (MERS), severe acquired respiratory syndrome (SARS), and SARS-CoV-2. Activation of the lectin pathway via mannose-binding lectin associated serine protease 2 (MASP2) is witnessed under discrete viral infections including COVID-19. Consequently, the spontaneous activation and deposits of complement components were traced in animal models and autopsy of COVID-19 patients. Pre-clinical and clinical studies evidence that the inhibition of complement components results in reduced complement deposits on target and non-target tissues, and aid in recovery from the pathological conditions of ARDS. Complement inhibitors (monoclonal antibody, protein, peptide, small molecules, etc.) exhibit great promise in blocking the activity of complement components and its downstream effects under various pathological conditions including SARS-CoV. Therefore, we hypothesize that targeting the potential complement inhibitors and complement cascade to counteract lung inflammation would be a better strategy to treat COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...