Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739761

RESUMO

In C. elegans, expanded families of divergent Hedgehog-related and Patched-related proteins promote numerous processes ranging from epithelial and sense organ development to pathogen responses to cuticle shedding during the molt cycle. The molecular functions of these proteins have been mysterious since nematodes lack a canonical Hedgehog signaling pathway. Here we show that Hedgehog-related proteins are components of the cuticle and pre-cuticle apical extracellular matrices that coat, shape, and protect external epithelia. Of four Hedgehog-related proteins imaged, two (GRL-2 and GRL-18) stably associated with the cuticles of specific tubes and two (GRL-7 and WRT-10) labelled pre-cuticle substructures such as furrows or alae. We found that wrt-10 mutations disrupt cuticle alae ridges, consistent with a structural role in matrix organization. We hypothesize that most nematode Hedgehog-related proteins are apical extracellular matrix components, a model that could explain many of the reported functions for this family. These results highlight ancient connections between Hedgehog proteins and the extracellular matrix and suggest that any signaling roles of C. elegans Hedgehog-related proteins will be intimately related to their matrix association.

2.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559246

RESUMO

The isocitrate dehydrogenase neomorphic mutation ( idh-1neo ) generates increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a C. elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to Δdhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. Additionally, supplementation with an alternate source of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding how this oncogenic mutation rewires cellular metabolism.

3.
PLoS Genet ; 19(9): e1010944, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721936

RESUMO

Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular puncta. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and the control of matrix assembly in vivo. Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Subtilisina , Animais , Sequência de Aminoácidos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/genética , Colágeno/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Subtilisina/genética , Subtilisina/metabolismo
4.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37396793

RESUMO

The C. elegans vulva is a polarized epithelial tube that has been studied extensively as a model for cell-cell signaling, cell fate specification, and tubulogenesis. Here we used endogenous fusions to show that the spectrin cytoskeleton is polarized in this organ, with conventional beta-spectrin ( UNC-70 ) found only at basolateral membranes and beta heavy spectrin ( SMA-1 ) found only at apical membranes. The sole alpha-spectrin ( SPC-1 ) is present at both locations but requires SMA-1 for its apical localization. Thus, beta spectrins are excellent markers for vulva cell membranes and polarity.

5.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333289

RESUMO

Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular aggregates. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and in the spatial and temporal restriction of matrix assembly in vivo . Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.

6.
bioRxiv ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38234847

RESUMO

In C. elegans, divergent Hedgehog-related (Hh-r) and Patched-related (PTR) proteins promote numerous processes ranging from epithelial and sense organ development to pathogen responses to cuticle shedding during the molt cycle. Here we show that Hh-r proteins are actual components of the cuticle and pre-cuticle apical extracellular matrices (aECMs) that coat, shape, and protect external epithelia. Different Hh-r proteins stably associate with the aECMs of specific tissues and with specific substructures such as furrows and alae. Hh-r mutations can disrupt matrix structure. These results provide a unifying model for the function of nematode Hh-r proteins and highlight ancient connections between Hh proteins and the extracellular matrix.

7.
PLoS Genet ; 18(8): e1010348, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35960773

RESUMO

Epithelial cells secrete apical extracellular matrices to form protruding structures such as denticles, ridges, scales, or teeth. The mechanisms that shape these structures remain poorly understood. Here, we show how the actin cytoskeleton and a provisional matrix work together to sculpt acellular longitudinal alae ridges in the cuticle of adult C. elegans. Transient assembly of longitudinal actomyosin filaments in the underlying lateral epidermis accompanies deposition of the provisional matrix at the earliest stages of alae formation. Actin is required to pattern the provisional matrix into longitudinal bands that are initially offset from the pattern of longitudinal actin filaments. These bands appear ultrastructurally as alternating regions of adhesion and separation within laminated provisional matrix layers. The provisional matrix is required to establish these demarcated zones of adhesion and separation, which ultimately give rise to alae ridges and their intervening valleys, respectively. Provisional matrix proteins shape the alae ridges and valleys but are not present within the final structure. We propose a morphogenetic mechanism wherein cortical actin patterns are relayed to the laminated provisional matrix to set up distinct zones of matrix layer separation and accretion that shape a permanent and acellular matrix structure.


Assuntos
Actinas , Caenorhabditis elegans , Actinas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Citoesqueleto/genética , Matriz Extracelular/metabolismo , Morfogênese
8.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35800971

RESUMO

The LIM homeodomain transcription factor LIN-11 is a key regulator of vulva, uterine, and neuron development in C. elegans. Multiple alleles of lin-11 are available, but none had been sequenced. We found that the reference allele, n389, is a 15900 bp deletion that also affects two other protein-coding genes, ZC247.1 and ZC247.2. The frequently used n566 allele is a 288bp deletion located in an intron and affecting the splice acceptor site.

9.
Genetics ; 219(3)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740248

RESUMO

The Patched-related superfamily of transmembrane proteins can transport lipids or other hydrophobic molecules across cell membranes. While the Hedgehog receptor Patched has been intensively studied, much less is known about the biological roles of other Patched-related family members. Caenorhabditis elegans has a large number of Patched-related proteins, despite lacking a canonical Hedgehog pathway. Here, we show that PTR-4 promotes the assembly of the precuticle apical extracellular matrix, a transient and molecularly distinct matrix that precedes and patterns the later collagenous cuticle or exoskeleton. ptr-4 mutants share many phenotypes with precuticle mutants, including defects in eggshell dissolution, tube shaping, alae (cuticle ridge) structure, molting, and cuticle barrier function. PTR-4 localizes to the apical side of a subset of outward-facing epithelia, in a cyclical manner that peaks when precuticle matrix is present. Finally, PTR-4 is required to limit the accumulation of the lipocalin LPR-3 and to properly localize the Zona Pellucida domain protein LET-653 within the precuticle. We propose that PTR-4 transports lipids or other hydrophobic components that help to organize the precuticle and that the cuticle and molting defects seen in ptr-4 mutants result at least in part from earlier disorganization of the precuticle.


Assuntos
Matriz Extracelular , Proteínas de Membrana , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sistemas CRISPR-Cas/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Muda/genética , Mucinas/metabolismo , Mutação , Domínios Proteicos/genética
10.
Curr Biol ; 31(11): R719-R721, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102119

RESUMO

Cytoplasmic intermediate filaments affect cell shape and tissue integrity, and mutations in the proteins that make up these filaments contribute to many human diseases. A new study has identified a conserved protein, BBLN-1/bublin, that is important for intermediate filament organization.


Assuntos
Citoesqueleto , Filamentos Intermediários , Humanos
11.
EMBO J ; 40(9): e106163, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33792936

RESUMO

Transcytosis is a form of specialized transport through which an extracellular cargo is endocytosed, shuttled across the cytoplasm in membrane-bound vesicles, and secreted at a different plasma membrane surface. This important process allows membrane-impermeable macromolecules to pass through a cell and become accessible to adjacent cells and tissue compartments. Transcytosis also promotes redistribution of plasma membrane proteins and lipids to different regions of the cell surface. Here we review transcytosis and highlight in vivo studies showing how developing epithelial cells use it to change shape, to migrate, and to relocalize signaling molecules.


Assuntos
Epitélio/fisiologia , Proteínas de Membrana/metabolismo , Animais , Citoplasma/metabolismo , Humanos , Metabolismo dos Lipídeos , Morfogênese , Transcitose
12.
PLoS Genet ; 16(11): e1009188, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33141826

RESUMO

Zona Pellucida domain (ZP) proteins are critical components of the body's external-most protective layers, apical extracellular matrices (aECMs). Although their loss or dysfunction is associated with many diseases, it remains unclear how ZP proteins assemble in aECMs. Current models suggest that ZP proteins polymerize via their ZPn subdomains, while ZPc subdomains modulate ZPn behavior. Using the model organism C. elegans, we investigated the aECM assembly of one ZP protein, LET-653, which shapes several tubes. Contrary to prevailing models, we find that LET-653 localizes and functions via its ZPc domain. Furthermore, we show that ZPc domain function requires cleavage at the LET-653 C-terminus, likely in part to relieve inhibition of the ZPc by the ZPn domain, but also to promote some other aspect of ZPc domain function. In vitro, the ZPc, but not ZPn, domain bound crystalline aggregates. These data offer a new model for ZP function whereby the ZPc domain is primarily responsible for matrix incorporation and tissue shaping.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo , Mucinas/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Drosophila , Embrião não Mamífero , Modelos Animais , Mucinas/genética , Mutação , Agregados Proteicos/genética , Domínios Proteicos/genética
13.
J Dev Biol ; 8(4)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036165

RESUMO

Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.

14.
Elife ; 92020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32975517

RESUMO

Biological tubes must develop and maintain their proper diameter to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The Caenorhabditis elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1°) and Notch-dependent (2°) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.


Assuntos
Caenorhabditis elegans/embriologia , Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Organogênese , Animais , Embrião não Mamífero/embriologia , Feminino , Vulva/embriologia
15.
Genetics ; 211(1): 169-183, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30409788

RESUMO

Phenotypic plasticity is a critical component of an organism's ability to thrive in a changing environment. The free-living nematode Caenorhabditis elegans adapts to unfavorable environmental conditions by pausing reproductive development and entering a stress-resistant larval stage known as dauer. The transition into dauer is marked by vast morphological changes, including remodeling of epidermis, neurons, and muscle. Although many of these dauer-specific traits have been described, the molecular basis of dauer-specific remodeling is still poorly understood. Here we show that the nidogen domain-containing protein DEX-1 facilitates stage-specific tissue remodeling during dauer morphogenesis. DEX-1 was previously shown to regulate sensory dendrite formation during embryogenesis. We find that DEX-1 is also required for proper remodeling of the stem cell-like epidermal seam cells. dex-1 mutant dauers lack distinct lateral cuticular alae during dauer and have increased sensitivity to sodium dodecyl sulfate. Furthermore, we find that DEX-1 is required for proper dauer mobility. We show that DEX-1 is secreted from the seam cells during dauer, but acts locally in a cell-autonomous manner. We find that dex-1 expression during dauer is regulated through DAF-16/FOXO-mediated transcriptional activation. Finally, we show that dex-1 acts with a family of zona pellucida domain-encoding genes to regulate dauer-specific epidermal remodeling. Taken together, our data indicate that DEX-1 is an extracellular matrix component that plays a central role in C. elegans epidermal remodeling during dauer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/metabolismo , Epiderme/crescimento & desenvolvimento , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/genética , Epiderme/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Morfogênese , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
Genetics ; 211(1): 185-200, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30409789

RESUMO

The body's external surfaces and the insides of biological tubes, like the vascular system, are lined by a lipid-, glycoprotein-, and glycosaminoglycan-rich apical extracellular matrix (aECM). aECMs are the body's first line of defense against infectious agents and promote tissue integrity and morphogenesis, but are poorly described relative to basement membranes and stromal ECMs. While some aECM components, such as zona pellucida (ZP) domain proteins, have been identified, little is known regarding the overall composition of the aECM or the mechanisms by which different aECM components work together to shape epithelial tissues. In Caenorhabditis elegans, external epithelia develop in the context of an ill-defined ZP-containing aECM that precedes secretion of the collagenous cuticle. C. elegans has 43 genes that encode at least 65 unique ZP proteins, and we show that some of these comprise distinct precuticle aECMs in the embryo. Previously, the nidogen- and EGF-domain protein DEX-1 was shown to anchor dendrites to the C. elegans nose tip in concert with the ZP protein DYF-7 Here, we identified a new, strong loss-of-function allele of dex-1, cs201dex-1 mutants die as L1 larvae and have a variety of tissue distortion phenotypes, including excretory defects, pharyngeal ingression, alae defects, and a short and fat body shape, that strongly resemble those of genes encoding ZP proteins. DEX-1 localizes to ZP-containing aECMs in the tissues that show defects in dex-1 mutants. Our studies suggest that DEX-1 is a component of multiple distinct embryonic aECMs that shape developing epithelia, and a potential partner of multiple ZP proteins.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular , Células Epiteliais/citologia , Mutação com Perda de Função , Morfogênese
17.
Nat Commun ; 9(1): 1741, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717108

RESUMO

Many membranes must merge during cellular trafficking, but fusion and fission events initiating at exoplasmic (non-cytosolic) membrane surfaces are not well understood. Here we show that the C. elegans cell-cell fusogen anchor-cell fusion failure 1 (AFF-1) is required for membrane trafficking events during development of a seamless unicellular tube. EGF-Ras-ERK signaling upregulates AFF-1 expression in the excretory duct tube to promote tube auto-fusion and subsequent lumen elongation. AFF-1 is required for scission of basal endocytic compartments and for apically directed exocytosis to extend the apical membrane. Lumen elongation also requires the transcytosis factor Rab11, but occurs independently of dynamin and clathrin. These results support a transcytosis model of seamless tube lumen growth and show that cell-cell fusogens also can play roles in intracellular membrane trafficking events.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Fusão Celular , Endocitose/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Fator de Crescimento Epidérmico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transporte Proteico , Transdução de Sinais , Proteínas ras/metabolismo
18.
Genetics ; 207(2): 625-642, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28842397

RESUMO

A lipid and glycoprotein-rich apical extracellular matrix (aECM) or glycocalyx lines exposed membranes in the body, and is particularly important to protect narrow tube integrity. Lipocalins ("fat cups") are small, secreted, cup-shaped proteins that bind and transport lipophilic cargo and are often found in luminal or aECM compartments such as mammalian plasma, urine, or tear film. Although some lipocalins can bind known aECM lipids and/or matrix metalloproteinases, it is not known if and how lipocalins affect aECM structure due to challenges in visualizing the aECM in most systems. Here we show that two Caenorhabditiselegans lipocalins, LPR-1 and LPR-3, have distinct functions in the precuticular glycocalyx of developing external epithelia. LPR-1 moves freely through luminal compartments, while LPR-3 stably localizes to a central layer of the membrane-anchored glycocalyx, adjacent to the transient zona pellucida domain protein LET-653 Like LET-653 and other C. elegans glycocalyx components, these lipocalins are required to maintain the patency of the narrow excretory duct tube, and also affect multiple aspects of later cuticle organization. lpr-1 mutants cannot maintain a continuous excretory duct apical domain and have misshapen cuticle ridges (alae) and abnormal patterns of cuticular surface lipid staining. lpr-3 mutants cannot maintain a passable excretory duct lumen, properly degrade the eggshell, or shed old cuticle during molting, and they lack cuticle barrier function. Based on these phenotypes, we infer that both LPR-1 and LPR-3 are required to build a properly organized aECM, while LPR-3 additionally is needed for aECM clearance and remodeling. The C. elegans glycocalyx provides a powerful system, amenable to both genetic analysis and live imaging, for investigating how lipocalins and lipids affect aECM structure.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo , Lipocalinas/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células Epiteliais/metabolismo , Glicocálix/genética , Glicocálix/metabolismo , Lipocalinas/genética , Mucinas/genética , Mucinas/metabolismo
19.
Genetics ; 205(3): 1247-1260, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28040739

RESUMO

Lipocalins are secreted cup-shaped glycoproteins that bind sterols, fatty acids, and other lipophilic molecules. Lipocalins have been implicated in a wide array of processes related to lipophilic cargo transport, sequestration, and signaling, and several are used as biomarkers for human disease, but the functions of most lipocalins remain poorly understood. Here we show that the Caenorhabditis elegans lipocalin LPR-1 is required to maintain apical membrane integrity and a continuous lumen in two narrow unicellular tubes, the excretory duct and pore, during a period of rapid lumen elongation. LPR-1 fusion protein is expressed by the duct and pore and accumulates both intracellularly and in apical extracellular compartments, but it can also function cell nonautonomously when provided from outside of the excretory system. lpr-1 mutant defects can be rescued by increased signaling through the epidermal growth factor (EGF)-Ras-extracellular signal regulated kinase (ERK) pathway, which promotes the more elongated duct vs. less elongated pore tube fate. Spatial and temporal rescue experiments indicate that Ras signaling acts within the duct and pore tubes during or prior to cell fate determination to bypass the requirement for LPR-1 lpr-1 mutations did not disrupt LIN-3/EGF-dependent duct-fate specification, prevent functioning of any specific LIN-3/EGF isoform, or alter LET-23/EGFR localization, and reduced signaling did not phenocopy or enhance lpr-1 mutant defects. These data suggest that LPR-1 protects lumen integrity through a LIN-3/EGF-independent mechanism, but that increased signaling upregulates some target(s) that can compensate for lpr-1 absence.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Lipocalinas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Sistema Endócrino/crescimento & desenvolvimento , Sistema Endócrino/metabolismo , Fator de Crescimento Epidérmico/genética , Lipocalinas/genética , Transdução de Sinais , Proteínas ras/metabolismo
20.
Semin Cell Dev Biol ; 67: 123-131, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27178486

RESUMO

A seamless tube is a very narrow-bore tube that is composed of a single cell with an intracellular lumen and no adherens or tight junctions along its length. Many capillaries in the vertebrate vascular system are seamless tubes. Seamless tubes also are found in invertebrate organs, including the Drosophila trachea and the Caenorhabditis elegans excretory system. Seamless tube cells can be less than a micron in diameter, and they can adopt very simple "doughnut-like" shapes or very complex, branched shapes comparable to those of neurons. The unusual topology and varied shapes of seamless tubes raise many basic cell biological questions about how cells form and maintain such structures. The prevalence of seamless tubes in the vascular system means that answering such questions has significant relevance to human health. In this review, we describe selected examples of seamless tubes in animals and discuss current models for how seamless tubes develop and are shaped, focusing particularly on insights that have come from recent studies in Drosophila and C. elegans.


Assuntos
Capilares/citologia , Células Endoteliais/ultraestrutura , Células Epiteliais/ultraestrutura , Morfogênese/genética , Traqueia/citologia , Doenças Vasculares/patologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Capilares/anatomia & histologia , Capilares/metabolismo , Polaridade Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Exocitose , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Pinocitose , Traqueia/anatomia & histologia , Traqueia/metabolismo , Doenças Vasculares/genética , Doenças Vasculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...