Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; : e202400030, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837295

RESUMO

Biomass resources are often disposed of inefficiently and it causes environmental degradation. These wastes can be turned into bio-products using effective conversion techniques. The synthesis of high-value bio-products from biomass adheres to the principles of a sustainable circular economy in a variety of industries, including agriculture. Recently, fluorescent carbon dots (C-dots) derived from biowastes have emerged as a breakthrough in the field, showcasing outstanding fluorescence properties and biocompatibility. The C-dots exhibit unique quantum confinement properties due to their small size, contributing to their exceptional fluorescence. The significance of their fluorescent properties lies in their versatile applications, particularly in bio-imaging and energy devices. Their rapid and straight-forward production using green/chemical precursors has further accelerated their adoption in diverse applications. The use of green precursors for C-dot not only addresses the biomass disposal issue through a scientific approach, but also establishes a path for a circular economy. This approach not only minimizes biowaste, which also harnesses the potential of fluorescent C-dots to contribute to sustainable practices in agriculture. This review explores recent developments and challenges in synthesizing high-quality C-dots from agro-residues, shedding light on their crucial role in advancing technologies for a cleaner and more sustainable future.

2.
Chem Rec ; 24(3): e202300308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200590

RESUMO

The transition to sustainable transportation has fueled the need for innovative electric vehicle (EV) charging solutions. Building Integrated Photovoltaics (BIPV) systems have emerged as a promising technology that combines renewable energy generation with the infra-structure of buildings. This paper comprehensively reviews the BIPV system for EV charging, focusing on its technology, application, and performance. The review identifies the gaps in the existing literature, emphasizing the need for a thorough examination of BIPV systems in the context of EV charging. A detailed review of BIPV technology and its application in EV charging is presented, covering aspects such as the generation of solar cell technology, BIPV system installation, design options and influencing factors. Furthermore, the review examines the performance of BIPV systems for EV charging, focusing on energy, economic, and environmental parameters and their comparison with previous studies. Additionally, the paper explores current trends in energy management for BIPV and EV charging, highlighting the need for effective integration and recommending strategies to optimize energy utilization. Combining BIPV with EV charging provides a promising approach to power EV chargers, enhances building energy efficiency, optimizes the building space, reduces energy losses, and decreases grid dependence. Utilizing BIPV-generated electricity for EV charging provides electricity and fuel savings, offers financial incentives, and increases the market value of the building infrastructure. It significantly lowers greenhouse gas emissions associated with grid and vehicle emissions. It creates a closed-loop circular economic system where energy is produced, consumed, and stored within the building. The paper underscores the importance of effective integration between Building Integrated Photovoltaics (BIPV) and Electric Vehicle (EV) charging, emphasizing the necessity of innovative grid technologies, energy storage solutions, and demand-response energy management strategies to overcome diverse challenges. Overall, the study contributes to the knowledge of BIPV systems for EV charging by presenting practical energy management, effectiveness and sustainability implications. It serves as a valuable resource for researchers, practitioners, and policymakers working towards sustainable transportation and energy systems.

3.
Chem Rec ; 23(12): e202300229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823687

RESUMO

In recent years, floating photovoltaic (FPV) technologies have gained more importance as a key source of clean energy, particularly in the context of providing sustainable energy to buildings. The rise of land scarcity and the need to reduce carbon emissions have made FPV systems a cost-effective solution for generating electricity. This review article aims to explore the rapidly growing trend of floating PV systems, which can be a practical solution for regions with limited land areas. The article discusses the structure of the PV modules used in FPV plants and key factors that affect site suitability choice. Moreover, the article presents various techniques for cooling and cleaning FPV to keep optimal performance and discusses feasible trends and prospects for the technology. Finally, this paper proposes the potential integration of FPV systems with other technologies to enhance energy generation efficiency and discusses other research aimed at the advancement of the technology. By examining the various features of FPV systems, this review article contributes to understanding the advantages and challenges associated with using this sustainable energy technology in different regional contexts.

4.
Sci Rep ; 13(1): 9521, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308568

RESUMO

Removing wastewater pollutants using semiconducting-based heterogeneous photocatalysis is an advantageous technique because it provides strong redox power charge carriers under sunlight irradiation. In this study, we synthesized a composite of reduced graphene oxide (rGO) and zinc oxide nanorods (ZnO) called rGO@ZnO. We established the formation of type II heterojunction composites by employing various physicochemical characterization techniques. To evaluate the photocatalytic performance of the synthesized rGO@ZnO composite, we tested it for reducing a common wastewater pollutant, para-nitro phenol (PNP), to para-amino phenol (PAP) under both ultraviolet (UV) and visible light irradiances. The rGOx@ZnO (x = 0.5-7 wt%) samples, comprising various weights of rGO, were investigated as potential photocatalysts for the reduction of PNP to PAP under visible light irradiation. Among the samples, rGO5@ZnO exhibited remarkable photocatalytic activity, achieving a PNP reduction efficiency of approximately 98% within a short duration of four minutes. These results demonstrate an effective strategy and provide fundamental insights into removing high-value-added organic water pollutants.

5.
iScience ; 26(3): 106079, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36843846

RESUMO

The future of energy generation is well in tune with the critical needs of the global economy, leading to more green innovations and emissions-abatement technologies. Introducing concentrated photovoltaics (CPVs) is one of the most promising technologies owing to its high photo-conversion efficiency. Although most researchers use silicon and cadmium telluride for CPV, we investigate the potential in nascent technologies, such as perovskite solar cell (PSC). This work constitutes a preliminary investigation into a "large-area" PSC module under a Fresnel lens (FL) with a "refractive optical concentrator-silicon-on-glass" base to minimize the PV performance and scalability trade-off concerning the PSCs. The FL-PSC system measured the solar current-voltage characteristics in variable lens-to-cell distances and illuminations. The PSC module temperature was systematically studied using the COMSOL transient heat transfer mechanism. The FL-based technique for "large-area" PSC architectures is a promising technology that further facilitates the potential for commercialization.

6.
Environ Dev Sustain ; 25(7): 5755-5796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35437423

RESUMO

In Nigeria, the rapid population increase and the overreliance on fossil fuel have created significant environmental, health, political, and economic consequences leading to severe socio-economic drawbacks. These factors have developed a wide gap between energy demand and supply due to insufficient local production, necessitating a clean energy supply for all. The photovoltaic device's economic and environmental merits have made it the most suitable clean energy alternative to help developing countries such as Nigeria achieve the SDG-7. However, apart from the device's low efficiency, which is undergoing intensive study globally, other factors affect the penetration of the technology in developing countries, particularly Nigeria. This report systematically reviews the literature on the country's energy crisis and renewable energy potential, leading to an overview of solar energy potential and penetration. The potential of the technology and its penetration in the country were provided. A list highlighting challenges hindering technology penetration was also provided, and a solution for each was recommended.

7.
Sci Rep ; 12(1): 16162, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171341

RESUMO

Bioactive glass (BG) is an interesting topic in soft tissue engineering because of its biocompatibility and bonding potential to increase fibroblast cell proliferation, synthesize growth factors, and stimulate granulation tissue development. The proposed BG with and without sodium (Na), prepared by the sol-gel method, is employed in wound healing studies. The BG/graphene oxide (GO) and BG (Na-free)/GO nanocomposites were investigated against fibroblast L929 cells in vitro; the 45S5 BG nanocomposites exhibited desired cell viability (80%), cell proliferation (30%), cell migration (25%), metabolic activity, and wound contraction due to extracellular matrix (ECM) production and enhanced protein release by fibroblast cells. Additionally, the antioxidant assays for BG, BG (Na-free), GO, and BG/GO, BG (Na-free)/GO were evaluated for effective wound healing properties. The results showed decreased inflammation sites in the wound area, assessed by the (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) assay with ~ 80% radical scavenging activity, confirming their anti-inflammatory and improved wound healing properties.


Assuntos
Antioxidantes , Nanocompostos , Antioxidantes/farmacologia , Vidro/química , Grafite , Nanocompostos/química , Sódio , Cicatrização
8.
Environ Sci Pollut Res Int ; 29(27): 40478-40506, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35349057

RESUMO

India is one of the highly developing countries in the world and it has the second-largest agricultural source of income, which covers 61% of the entire income of the country. The most valuable income group, by giving the appropriate training in this technology, will make their entire country to become one of the most highly developing counties in the world. In recent years, many developing, developed, and underdeveloped countries face shortages of fish, fruits, and vegetables due to natural disasters like earthquakes, tsunami, and any other unexpected events. Now the main issue of this paper is to preserve the food products from post-harvest to consumer-level, which cover 60% of losses due to the unavailability of preservative methods. This paper mainly focused on the conventional methods to advanced solar drying technologies for perseverating fish, fruits, and vegetables and also it discusses the technology used for drying the yield range of fish like Atheriniformes, Catfish, Chilwa, etc. Fruits like banana, mango, and papaya, and vegetables like bitter gourd, cabbage, and cocoa beans have been reviewed and also discussed some problems along with their solutions in concern with food products drying, thereby the selection of dryer for drying products will be made easy by this review article. On the whole, this investigation would help researchers in fish drying to choose the better drying methods for acquiring better results for particular fish, fruits, and vegetables that enable any entrepreneur to select the appropriate method reducing the cost and time.


Assuntos
Frutas , Verduras , Animais , Dessecação/métodos , Peixes , Manipulação de Alimentos/métodos , Luz Solar
9.
Sci Total Environ ; 826: 154038, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35202698

RESUMO

Microbial fuel cells (MFCs) exhibit tremendous potential in the sustainable management of dye wastewater via degrading azo dyes while generating electricity. The past decade has witnessed advances in MFC configurations and materials; however, comprehensive analyses of design and material and its association with dye degradation and electricity generation are required for their industrial application. MFC models with high efficiency of dye decolorization (96-100%) and a wide variation in power generation (29.4-940 mW/m2) have been reported. However, only 28 out of 104 studies analyzed dye mineralization - a prerequisite to obviate dye toxicity. Consequently, the current review aims to provide an in-depth analysis of MFCs potential in dye degradation and mineralization and evaluates materials and designs as crucial factors. Also, structural and operation parameters critical to large-scale applicability and complete mineralization of azo dye were evaluated. Choice of materials, i.e., bacteria, anode, cathode, cathode catalyst, membrane, and substrate and their effects on power density and dye decolorization efficiency presented in review will help in economic feasibility and MFCs scalability to develop a self-sustainable solution for treating azo dye wastewater.


Assuntos
Fontes de Energia Bioelétrica , Compostos Azo/química , Eletricidade , Eletrodos , Águas Residuárias/química
10.
Chem Rec ; 22(2): e202100235, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34796621

RESUMO

The transportation sector is the largest consumer of fossil fuels; making it a major producer of greenhouse gases. Due to declining fossil fuel reserves and increasingly stringent vehicle emission regulations globally, it is essential to shift to alternative energy sources. Economic and eco-friendly fuel-efficient hybrid, electric, and fuel cell vehicles are regarded as one of the best alternative solutions to cope with the government policies and to reduce the rise in global temperature caused by the automotive sector. Technological advancements in fuel cells, batteries, and chargers have further supported the development of electric vehicles. The major challenges of range and charging time in electric vehicles can be countered by range extension technology and developing all-electric hybrid vehicles. In this review, a comprehensive study of different type of vehicles and their architectures are presented. Insights on energy storage devices and converters of electric vehicles currently in use were also provided. Furthermore, various fuel cell advancements and the technical challenges faced during the commercialization of fuel cell vehicles were highlighted.


Assuntos
Biodiversidade , Veículos Automotores , Políticas , Tecnologia , Temperatura
11.
Sci Rep ; 11(1): 23388, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862439

RESUMO

The emergence of perovskite solar cells (PSCs) in a "catfish effect" of other conventional photovoltaic technologies with the massive growth of high-power conversion efficiency (PCE) has given a new direction to the entire solar energy field. Replacing traditional metal-based electrodes with carbon-based materials is one of the front-runners among many other investigations in this field due to its cost-effective processability and high stability. Carbon-based perovskite solar cells (c-PSCs) have shown great potential for the development of large scale photovoltaics. First of its kind, here we introduce a facile and cost-effective large scale carbon nanoparticles (CNPs) synthesis from mustard oil assisted cotton combustion for utilization in the mesoporous carbon-based perovskite solar cell (PSC). Also, we instigate two different directions of utilizing the carbon nanoparticles for a composite high temperature processed electrode (HTCN) and a low temperature processed electrode (LTCN) with detailed performance comparison. NiO/CNP composite thin film was used in high temperature processed electrodes, and for low temperature processed electrodes, separate NiO and CNP layers were deposited. The HTCN devices with the cell structure FTO/c-TiO2/m-TiO2/m-ZrO2/high-temperature NiO-CNP composite paste/infiltrated MAPI (CH3NH3PbI3) achieved a maximum PCE of 13.2%. In addition, high temperature based carbon devices had remarkable stability of ~ 1000 h (ambient condition), retaining almost 90% of their initial efficiency. In contrast, LTCN devices with configuration FTO/c-TiO2/m-TiO2/m-ZrO2/NiO/MAPI/low-temperature CNP had a PCE limit of 14.2%, maintaining ~ 72% of the initial PCE after 1000 h. Nevertheless, we believe this promising approach and the comparative study between the two different techniques would be highly suitable and adequate for the upcoming cutting-edge experimentations of PSC.

12.
Nanomaterials (Basel) ; 11(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34578615

RESUMO

Pigments can retain their color for many centuries and can withstand the effects of light and weather. The paint industry suffers from issues like aggressive moisture, corrosion, and further environmental contamination of the pigment materials. Low-cost, long-lasting, and large-scale pigments are highly desirable to protect against the challenges of contamination that exist in the paint industry. This exploratory study reinforces the color and thermal stability of industrial-grade (IG) magnetite (Fe3O4). IG Fe3O4 pigments were further considered for surface treatment with sodium hexametaphosphate (SHMP). This metaphosphate hexamer sequestrant provides good dispersion ability and a high surface energy giving thermal and dust protection to the pigment. Various physicochemical characterizations were employed to understand the effectiveness of this treatment across various temperatures (180-300 °C). The X-ray diffraction, Raman, and X-ray photoelectron spectroscopy techniques signify that the SHMP-treated Fe3O4 acquired magnetite phase stability up to 300 °C. In addition, the delta-E color difference method was also adopted to measure the effective pigment properties, where the delta-E value significantly decreased from 8.77 to 0.84 once treated with SHMP at 300 °C. The distinct color retention at 300 °C and the improved dispersion properties of surface-treated Fe3O4 positions this pigment as a robust candidate for high-temperature paint and coating applications. This study further encompasses an effort to design low-cost, large-scale, and thermally stable pigments that can protect against UV-rays, dust, corrosion, and other color contaminants that are endured by building paints.

13.
Chem Rec ; 21(7): 1570-1610, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33539046

RESUMO

Textile wastewater heavy metal pollution has become a severe environmental problem worldwide. Metal ion inclusion in a dye molecule exhibits a bathochromic shift producing deeper but duller shades, which provides excellent colouration. The ejection of a massive volume of wastewater containing heavy metal ions such as Cr (VI), Pb (II), Cd (II) and Zn (II) and metal-containing dyes are an unavoidable consequence because the textile industry consumes large quantities of water and all these chemicals cannot be combined entirely with fibres during the dyeing process. These high concentrations of chemicals in effluents interfere with the natural water resources, cause severe toxicological implications on the environment with a dramatic impact on human health. This article reviewed the various metal-containing dye types and their heavy metal ions pollution from entryway to the wastewater, which then briefly explored the effects on human health and the environment. Graphene-based absorbers, specially graphene oxide (GO) benefits from an ordered structured, high specific surface area, and flexible surface functionalization options, which are indispensable to realize a high performance of heavy metal ion removal. These exceptional adsorption properties of graphene-based materials support a position of ubiquity in our everyday lives. The collective representation of the textile wastewater's effective remediation methods is discussed and focused on the GO-based adsorption methods. Understanding the critical impact regarding the GO-based materials established adsorption portfolio for heavy metal ions removal are also discussed. Various heavy-metal ions and their pollutant effect, ways to remove such heavy metal ions and role of graphene-based adsorbent including their demand, perspective, limitation, and relative scopes are discussed elaborately in the review.

14.
Chem Rec ; 21(4): 663-714, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33543591

RESUMO

Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross-sections and insertion of baffles/blockages/pin-fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated.

15.
Molecules ; 26(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430043

RESUMO

Flooding of the cathode flow channel is a major hindrance in achieving maximum performance from Proton Exchange Membrane Fuel Cells (PEMFC) during the scaling up process. Water accumulated between the interface region of Gas Diffusion Layer (GDL) and rib of the cathode flow field can be removed by the use of Porous Sponge Inserts (PSI) on the ribs. In the present work, the experimental investigations are carried out on PEMFC for the various reaction areas, namely 25, 50 and 100 cm2. Stoichiometry value of 2 is maintained for all experiments to avoid variations in power density obtained due to differences in fuel utilization. The experiments include two flow fields, namely Serpentine Flow Field (SFF) and Modified Serpentine with Staggered provisions of 4 mm PSI (4 mm × 2 mm × 2 mm) Flow Field (MSSFF). The peak power densities obtained on MSSFF are 0.420 W/cm2, 0.298 W/cm2 and 0.232 W/cm2 compared to SFF which yields 0.242 W/cm2, 0.213 W/cm2 and 0.171 W/cm2 for reaction areas of 25, 50 and 100 cm2 respectively. Further, the reliability of experimental results is verified for SFF and MSSFF on 25 cm2 PEMFC by using Electrochemical Impedance Spectroscopy (EIS). The use of 4 mm PSI is found to improve the performance of PEMFC through the better water management.


Assuntos
Fontes de Energia Elétrica , Membranas Artificiais , Água/química , Porosidade
16.
Sci Rep ; 10(1): 15578, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968188

RESUMO

This study demonstrates the development of flexible graphene oxide coatings (GOCs) by the screen-printed technique and further its implementation as a thermal absorber for buildings' thermal comfort purpose. The basic concept consists the integration of the GOC as a flat absorber on the top of a low iron glass or aluminium-based substrate (5 × 5 cm2) connecting through a phase change material channel in contact with direct sun exposure. The function of GOC as an outdoor cover of the prototype chamber is to maintain the high indoor temperature while the outdoor temperature is low. Using the GOC, it has been observed that the indoor temperature (at the substrate) of the prototype chamber always remains higher as compared to the outdoor temperature (at the GOC) as measured under 1 SUN 1.5 AM condition. The temperature difference between outdoor and indoor exterior surface significantly increases during the light exposure time, whereas the difference drastically approaches to zero during the cooling period. The variation of different crucial environmental factors such as high temperature, moisture, flexibility and water resistivity has been investigated on the developed GOCs to understand the stability of the coating further.

17.
Ind Eng Chem Res ; 59(23): 11063-11071, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32565615

RESUMO

The self-assembling characteristics allow carbon nanomaterials to be readily explored, environmentally benign, solution-processed, low-cost, and efficient solar light-harvesting materials. An effort has been made to replace the regular photovoltaic device's electrodes by different carbon allotrope-based electrodes. Sequential fabrication of carbon solar cells (SCs) was performed under ambient conditions, where FTO/graphene/single-walled carbon nanotubes/graphene quantum dots-fullerene/carbon black paste layers were assembled with poly(methyl methacrylate) (PMMA) as an encapsulating layer. The PMMA layer provides significant improvement toward the entry of water vapor, hence leading to stability up to 1000 h. The photoconversion efficiency of the PMMA-encapsulated carbon SC has been increased by ∼105% and the stability decreased by only ∼10% after 1000 h of exposure to environmental moisture. Besides, the building integrated photovoltaic window properties achieved using this carbon SC were also investigated by using the color rendering index and the correlated color temperature, which can have an impact on the buildings' occupants' comfort. This study leads to an extensive integration to improve carbon-based materials because of their effective and useful but less-explored characteristics suitable for potential photovoltaic applications.

18.
J Phys Chem A ; 124(28): 5709-5719, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32525686

RESUMO

Dextran-templating hydrothermal synthesis of monoclinic WO3 exhibits excellent specific surface area of ∼110 m2/g and a monomodal pore distribution with an average pore diameter of ∼20 nm. Dextran plays a crucial role in generating porosity on WO3. The role of supporting dextran has been investigated and found to be crucial to tune the surface area, porosity, and morphology. The photoluminescence and X-ray photoelectron spectroscopy studies reveal the existence of oxygen vacancies in substoichiometric WO3, which creates localized defect states in WO3 as synthesized through this templating method. The highly mesoporous WO3 has been further explored as an interfacial cathode buffer layer (CBL) in dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). A significantly enhanced photoconversion efficiency has boosted up the performance of the counter electrode used in traditional DSSC (as platinum) and PSC (as carbon) devices by ∼48 and ∼29%, respectively. The electrochemical impedance and incident photon to current conversion efficiency (IPCE) studies were also analyzed in order to understand the catalytic behavior of the WO3 interfacial CBL for both DSSCs and PSCs, respectively. The much higher surface area of WO3 enables rapid electron hopping mechanism, which further benefits for higher electron mobility, resulting in higher short circuit current. Through this study, we were able to unequivocally establish the importance of buffer layer incorporation, which can further help to integrate the DSSC and PSC devices toward more stable, reliable, and enhanced efficiency-generating devices. In spite of this, using WO3 constitutes an important step toward the efficiency improvement of the devices for futuristic photoelectrochromic or self-powered switchable glazing for low-energy adaptive building integration.

19.
Sci Rep ; 10(1): 6835, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321928

RESUMO

Perovskite solar cells (PSCs) composed of organic polymer-based hole-transporting materials (HTMs) are considered to be an important strategy in improving the device performance, to compete with conventional solar cells. Yet the use of such expensive and unstable HTMs, together with hygroscopic perovskite structure remains a concern - an arguable aspect for the prospect of onsite photovoltaic (PV) application. Herein, we have demonstrated the sustainable fabrication of efficient and air-stable PSCs composed of an invasive plant (Eichhornia crassipes) extracted porous graphitic carbon (EC-GC) which plays a dual role as HTM/counter electrode. The changes in annealing temperature (~450 °C, ~850 °C and ~1000 °C) while extracting the EC-GC, made a significant impact on the degree of graphitization - a remarkable criterion in determining the device performance. Hence, the fabricated champion device-1c: Glass/FTO/c-TiO2/mp-TiO2/CH3NH3PbI3-xClx/EC-GC10@CH3NH3PbI3-x Clx/EC-GC10) exhibited a PCE of 8.52%. Surprisingly, the introduced EC-GC10 encapsulated perovskite interfacial layer at the perovskite/HTM interface helps in overcoming the moisture degradation of the hygroscopic perovskite layer in which the same champion device-1c evinced better air stability retaining its efficiency ~94.40% for 1000 hours. We believe that this present work on invasive plant extracted carbon playing a dual role, together as an interfacial layer may pave the way towards a reliable perovskite photovoltaic device at low-cost.

20.
ACS Omega ; 5(1): 422-429, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956789

RESUMO

The stability of perovskite solar cells (PSC) is often compromised by the organic hole transport materials (HTMs). We report here the effect of WO3 as an inorganic HTM for carbon electrodes for improved stability in PSCs, which are made under ambient conditions. Sequential fabrication of the PSC was performed under ambient conditions with mesoporous TiO2/Al2O3/CH3NH3PbI3 layers, and, on the top of these layers, the WO3 nanoparticle-embedded carbon electrode was used. Different concentrations of WO3 nanoparticles as HTM incorporated in carbon counter electrodes were tested, which varied the stability of the cell under ambient conditions. The addition of 7.5% WO3 (by volume) led to a maximum power conversion efficiency of 10.5%, whereas the stability of the cells under ambient condition was ∼350 h, maintaining ∼80% of the initial efficiency under light illumination. At the same time, the higher WO3 concentration exhibited an efficiency of 9.5%, which was stable up to ∼500 h with a loss of only ∼15% of the initial efficiency under normal atmospheric conditions and light illumination. This work demonstrates an effective way to improve the stability of carbon-based perovskite solar cells without affecting the efficiency for future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...