Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 157(1): 137-45, 2008 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-18289784

RESUMO

The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol(-1)) than silica (69.93 kJ mol(-1)). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 degrees C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions (DeltaH degrees >40 kJ mol(-1)) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 degrees C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina.


Assuntos
Alumínio/química , Corantes de Rosanilina/isolamento & purificação , Dióxido de Silício/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA