Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 17(6): 1007-1024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38336172

RESUMO

BACKGROUND & AIMS: In the classic form of α1-antitrypsin deficiency (ATD), the misfolded α1-antitrypsin Z (ATZ) variant accumulates in the endoplasmic reticulum (ER) of liver cells. A gain-of-function proteotoxic mechanism is responsible for chronic liver disease in a subgroup of homozygotes. Proteostatic response pathways, including conventional endoplasmic reticulum-associated degradation and autophagy, have been proposed as the mechanisms that allow cellular adaptation and presumably protection from the liver disease phenotype. Recent studies have concluded that a distinct lysosomal pathway called endoplasmic reticulum-to-lysosome completely supplants the role of the conventional macroautophagy pathway in degradation of ATZ. Here, we used several state-of-the-art approaches to characterize the proteostatic responses more fully in cellular systems that model ATD. METHODS: We used clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing coupled to a cell selection step by fluorescence-activated cell sorter to perform screening for proteostasis genes that regulate ATZ accumulation and combined that with selective genome editing in 2 other model systems. RESULTS: Endoplasmic reticulum-associated degradation genes are key early regulators and multiple autophagy genes, from classic as well as from ER-to-lysosome and other newly described ER-phagy pathways, participate in degradation of ATZ in a manner that is temporally regulated and evolves as ATZ accumulation persists. Time-dependent changes in gene expression are accompanied by specific ultrastructural changes including dilation of the ER, formation of globular inclusions, budding of autophagic vesicles, and alterations in the overall shape and component parts of mitochondria. CONCLUSIONS: Macroautophagy is a critical component of the proteostasis response to cellular ATZ accumulation and it becomes more important over time as ATZ synthesis continues unabated. Multiple subtypes of macroautophagy and nonautophagic lysosomal degradative pathways are needed to respond to the high concentrations of misfolded protein that characterizes ATD and these pathways are attractive candidates for genetic variants that predispose to the hepatic phenotype.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Lisossomos , Macroautofagia , Proteostase , Deficiência de alfa 1-Antitripsina , alfa 1-Antitripsina , Deficiência de alfa 1-Antitripsina/patologia , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo , Humanos , Lisossomos/metabolismo , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/genética , Retículo Endoplasmático/metabolismo , Sistemas CRISPR-Cas , Autofagia/genética , Edição de Genes
2.
Blood Cells Mol Dis ; 104: 102796, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717409

RESUMO

Thrombopoiesis is the production of platelets from megakaryocytes in the bone marrow of mammals. In fish, thrombopoiesis involves the formation of thrombocytes without megakaryocyte-like precursors but derived from erythrocyte thrombocyte bi-functional precursor cells. One unique feature of thrombocyte differentiation involves the maturation of young thrombocytes in circulation. In this study, we investigated the role of hox genes in zebrafish thrombopoiesis to model platelet production. We selected hoxa10b, hoxb2a, hoxc5a, hoxd3a, and hoxc11b from thrombocyte RNA expression data, and checked whether they are expressed in young or mature thrombocytes. We found hoxa10b, hoxb2a, hoxc5a, and hoxd3a were expressed in both young and mature thrombocytes and hoxc11b was expressed in only young thrombocytes. We then performed knockdowns of these 5 hox genes and found hoxc11b knockdown resulted in thrombocytosis and the rest showed thrombocytopenia. To identify hox genes that could have been missed by the above datasets, we performed knockdowns 47 hox genes in the zebrafish genome and found hoxa9a, and hoxb1a knockdowns resulted in thrombocytopenia and they were expressed in both young and mature thrombocytes. In conclusion, our comprehensive knockdown study identified Hoxa10b, Hoxb2a, Hoxc5a, Hoxd3a, Hoxa9a, and Hoxb1a, as positive regulators and Hoxc11b, as a negative regulator for thrombocyte development.


Assuntos
Trombocitopenia , Trombopoese , Animais , Trombopoese/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Genes Homeobox , Plaquetas/metabolismo , Megacariócitos , Trombocitopenia/genética , Mamíferos/genética
3.
Case Rep Oncol ; 15(3): 918-926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36636671

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. Of the approximate ten to twenty million people currently infected worldwide, 4-9% of infected individuals develop adult T-cell leukemia/lymphoma (ATLL) or HTLV-associated myelopathy/tropical spastic paresis (HAM/TSP) in their lifetime. The current report is based on a patient who presented concurrently with CD30+ lymphoma subtype ATLL and HAM/TSP. The patient's ATLL responded to brentuximab-vedotin-based chemotherapy; however, HAM/TSP did not improve. The patient's peripheral blood mononuclear cells were cultured and injected into immunodeficient mice, and the mice developed massive organ involvement and chronic lymphocytic leukemia-subtype ATLL. This case study is novel in the findings of concurrent development of ATLL and HAM/TSP, the response to brentuximab-vedotin chemotherapy, and the use HTLV-1 helix basic zipper protein-targeted probe for RNAscope for diagnosis.

4.
Retrovirology ; 17(1): 27, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859220

RESUMO

BACKGROUND: Adult T-cell leukemia lymphoma (ATLL) is a chemotherapy-resistant malignancy with a median survival of less than one year that will afflict between one hundred thousand and one million individuals worldwide who are currently infected with human T-cell leukemia virus type 1. Recurrent somatic mutations in host genes have exposed the T-cell receptor pathway through nuclear factor κB to interferon regulatory factor 4 (IRF4) as an essential driver for this malignancy. We sought to determine if IRF4 represents a therapeutic target for ATLL and to identify downstream effectors and biomarkers of IRF4 signaling in vivo. RESULTS: ATLL cell lines, particularly Tax viral oncoprotein-negative cell lines, that most closely resemble ATLL in humans, were sensitive to dose- and time-dependent inhibition by a next-generation class of IRF4 antisense oligonucleotides (ASOs) that employ constrained ethyl residues that mediate RNase H-dependent RNA degradation. ATLL cell lines were also sensitive to lenalidomide, which repressed IRF4 expression. Both ASOs and lenalidomide inhibited ATLL proliferation in vitro and in vivo. To identify biomarkers of IRF4-mediated CD4 + T-cell expansion in vivo, transcriptomic analysis identified several genes that encode key regulators of ATLL, including interleukin 2 receptor subunits α and ß, KIT ligand, cytotoxic T-lymphocyte-associated protein 4, and thymocyte selection-associated high mobility group protein TOX 2. CONCLUSIONS: These data support the pursuit of IRF4 as a therapeutic target in ATLL with the use of either ASOs or lenalidomide.


Assuntos
Infecções por HTLV-I/metabolismo , Fatores Reguladores de Interferon/metabolismo , Leucemia-Linfoma de Células T do Adulto/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/tratamento farmacológico , Infecções por HTLV-I/patologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Fatores Reguladores de Interferon/genética , Lenalidomida/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/patologia , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tionucleotídeos/farmacologia
5.
JCI Insight ; 4(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578308

RESUMO

Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/metabolismo , Proteínas dos Retroviridae/metabolismo , Adulto , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Estimativa de Kaplan-Meier , Leucemia-Linfoma de Células T do Adulto/patologia , Leucemia-Linfoma de Células T do Adulto/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Proteínas dos Retroviridae/genética , Transcriptoma
6.
Blood ; 134(17): 1406-1414, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31467059

RESUMO

Immune checkpoint inhibitors are a powerful new tool in the treatment of cancer, with prolonged responses in multiple diseases, including hematologic malignancies, such as Hodgkin lymphoma. However, in a recent report, we demonstrated that the PD-1 inhibitor nivolumab led to rapid progression in patients with adult T-cell leukemia/lymphoma (ATLL) (NCT02631746). We obtained primary cells from these patients to determine the cause of this hyperprogression. Analyses of clonality, somatic mutations, and gene expression in the malignant cells confirmed the report of rapid clonal expansion after PD-1 blockade in these patients, revealed a previously unappreciated origin of these malignant cells, identified a novel connection between ATLL cells and tumor-resident regulatory T cells (Tregs), and exposed a tumor-suppressive role for PD-1 in ATLL. Identifying the mechanisms driving this alarming outcome in nivolumab-treated ATLL may be broadly informative for the growing problem of rapid progression with immune checkpoint therapies.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Reguladores/patologia , Adulto , Animais , Progressão da Doença , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Células Tumorais Cultivadas
7.
J Biol Chem ; 293(18): 6844-6858, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29540473

RESUMO

The human T-cell leukemia virus-1 (HTLV-1) oncoprotein Tax drives cell proliferation and resistance to apoptosis early in the pathogenesis of adult T-cell leukemia (ATL). Subsequently, probably as a result of specific immunoediting, Tax expression is down-regulated and functionally replaced by somatic driver mutations of the host genome. Both amplification and point mutations of interferon regulatory factor 4 (IRF4) have been previously detected in ATL., K59R is the most common single-nucleotide variation of IRF4 and is found exclusively in ATL. High-throughput whole-exome sequencing revealed recurrent activating genetic alterations in the T-cell receptor, CD28, and NF-κB pathways. We found that IRF4, which is transcriptionally activated downstream of these pathways, is frequently mutated in ATL. IRF4 RNA, protein, and IRF4 transcriptional targets are uniformly elevated in HTLV-1-transformed cells and ATL cell lines, and IRF4 was bound to genomic regulatory DNA of many of these transcriptional targets in HTLV-1-transformed cell lines. We further noted that the K59R IRF4 mutant is expressed at higher levels in the nucleus than WT IRF4 and is transcriptionally more active. Expression of both WT and the K59R mutant of IRF4 from a constitutive promoter in retrovirally transduced murine bone marrow cells increased the abundance of T lymphocytes but not myeloid cells or B lymphocytes in mice. IRF4 may represent a therapeutic target in ATL because ATL cells select for a mutant of IRF4 with higher nuclear expression and transcriptional activity, and overexpression of IRF4 induces the expansion of T lymphocytes in vivo.


Assuntos
Fatores Reguladores de Interferon/genética , Leucemia-Linfoma de Células T do Adulto/genética , Mutação , Adulto , Animais , Apoptose , Antígenos CD28/genética , Antígenos CD28/metabolismo , Núcleo Celular/metabolismo , Transformação Celular Viral , Citosol/metabolismo , DNA/metabolismo , Dimerização , Técnicas de Silenciamento de Genes , Produtos do Gene tax/genética , Produtos do Gene tax/fisiologia , Células HEK293 , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Fatores Reguladores de Interferon/metabolismo , Células Jurkat , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/citologia , Transcrição Gênica , Regulação para Cima , Sequenciamento do Exoma
8.
Platelets ; 29(8): 811-820, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29125377

RESUMO

Intraflagellar transport (IFT) proteins are vital for the genesis and maintenance of cilia. Our identification of ift122 transcripts in zebrafish thrombocytes that lack primary cilia was unexpected. IFT proteins serve transport in cilia, whose narrow dimensions may have necessitated the evolution of IFT from vesicular transport in ancestral eukaryotes. We hypothesized that IFTs might also facilitate transport within the filopodia that form when thrombocytes are activated. To test this possibility, we knocked down ift122 expression by injecting antisense Morpholino oligonucleotides (MOs) into zebrafish embryos. Laser-induced arterial thrombosis showed prolonged time to occlusion (TTO) of the vessel, as would be expected with defective thrombocyte function. Acute effects in adult zebrafish were evaluated by Vivo-Morpholino (Vivo-MO) knockdown of ift122. Vivo-MO morphants showed a prolonged time to thrombocyte aggregation (TTA) in the plate tilt assay after thrombocyte activation by the following agonists: ADP, collagen, PAR1 peptide, and epinephrine. A luminescence assay for ATP revealed that ATP secretion by thrombocytes was reduced in collagen-activated blood of Vivo-MO ift122 morphants. Moreover, DiI-C18 labeled morphant thrombocytes exposed to collagen showed reductions in filopodia number and length. Analysis of ift mutants, in which cilia defects have been noted, also showed prolongation of TTO in our arterial laser thrombosis assay. Additionally, collagen activation of wild-type thrombocytes led to a concentration of IFT122 both within and at the base of filopodia. Taken together these results, suggest that IFT proteins are involved in both the extension of filopodia and secretion of ATP, which are critical in thrombocyte function.


Assuntos
Plaquetas/metabolismo , Embrião não Mamífero/metabolismo , Pseudópodes/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/citologia , Embrião não Mamífero/citologia , Técnicas de Silenciamento de Genes , Pseudópodes/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Platelets ; 26(7): 613-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25902147

RESUMO

Zebrafish has become an excellent model system to study mammalian hemostasis. Despite our extensive efforts to develop technologies to measure zebrafish hemostasis and even with previously established thrombocyte qualitative and quantitative functional assays, quantifying thrombocyte function for high throughput applications has been a challenge. In this paper, we have developed two quantitative methods to estimate thrombocyte aggregation: one by whole blood aggregometry and the other by flow cytometry. We found that it is possible to conduct whole blood aggregometry using only 2 µl of blood and the currently available aggregometer. Each of three agonists, arachidonic acid, ADP, and collagen yielded impedance curves similar to those obtained with human blood. We were also able to use flow cytometry to indirectly quantify the extent of thrombocyte aggregation by labeling whole blood with mepacrine, aggregating in the presence of each of the above agonists, separating the aggregates from the white blood cells by centrifugation, and then sorting the resulting white cell fraction for thrombocyte numbers. These methods have high throughput capabilities and have the potential to be used in large scale screens to detect and characterize mutants with thrombocyte functional defects or to identify genes involved in thrombocyte function by large scale knockdowns.


Assuntos
Plaquetas/metabolismo , Citometria de Fluxo , Agregação Plaquetária , Testes de Função Plaquetária , Peixe-Zebra/sangue , Animais , Animais Geneticamente Modificados , Ácido Araquidônico/farmacologia , Plaquetas/efeitos dos fármacos , Citometria de Fluxo/métodos , Cinética , Agregação Plaquetária/efeitos dos fármacos
10.
Blood Cells Mol Dis ; 54(1): 78-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25135204

RESUMO

Morpholino and vivo-morpholino gene knockdown methods have been used to study thrombocyte function in zebrafish. However, a large-scale knockdown of the entire zebrafish genome using these technologies to study thrombocyte function is prohibitively expensive. We have developed an inexpensive gene knockdown method, which uses a hybrid of a control vivo-morpholino and a standard antisense oligonucleotide specific for a gene. This hybrid molecule is able to deliver antisense deoxyoligonucleotides into zebrafish thrombocytes because it piggybacks on a control vivo-morpholino. To validate use of this hybrid molecule in gene knockdowns, we targeted the thrombocyte specific αIIb gene with a hybrid of a control vivo-morpholino and an oligonucleotide antisense to αIIb mRNA. The use of this piggyback technology resulted in degradation of αIIb mRNA and led to thrombocyte functional defect. This piggyback method to knockdown genes is inexpensive since one control vivo-morpholino can be used to target many different genes by making many independent gene-specific oligonucleotide hybrids. Thus, this novel piggyback technology can be utilized for cost-effective large-scale knockdowns of genes to study thrombocyte function in zebrafish.


Assuntos
Plaquetas/metabolismo , Técnicas de Silenciamento de Genes/métodos , Morfolinos , Glicoproteína IIb da Membrana de Plaquetas , Estabilidade de RNA , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Morfolinos/genética , Morfolinos/farmacologia , Glicoproteína IIb da Membrana de Plaquetas/genética , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Blood Cells Mol Dis ; 54(1): 116-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25129381

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a canonical member of a group of dioxins which are byproducts of industrial combustion and are dangerous environmental pollutants. TCDD has been shown to cause several abnormalities in humans and wildlife, and recently, some dioxins have been found to activate platelets. However, TCDD-mediated platelet activation pathways are elusive and virtually nothing is known about TCDD activation of fish thrombocytes. To investigate TCDD effect on thrombocyte function, we tested zebrafish blood in presence of TCDD using a thrombocyte functional assay. We found that TCDD activated thrombocytes. Further experiments showed that thrombocytes of fish treated with TCDD formed both aggregates and filopodia. To investigate the mechanism of TCDD-mediated activation of thrombocytes we used inhibitors for Gq, cyclooxygenase-1, aryl hydrocarbon receptor (AHR), c-src, Akt, and ERK1/2. We found that TCDD induces AHR which activates c-src and signals the activation of Akt and ERK1/2 which are ultimately involved in generation of thromboxane A2. Furthermore, we found that ADP potentiates TCDD action, which led to the discovery that ADP itself activates AHR in the absence of TCDD. Taken together, these results resolved the pathway of TCDD activation of thrombocytes and led to the finding that ADP is an activator of AHR.


Assuntos
Poluentes Ambientais/efeitos adversos , Agregação Plaquetária/efeitos dos fármacos , Dibenzodioxinas Policloradas/efeitos adversos , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Poluentes Ambientais/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dibenzodioxinas Policloradas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tromboxano A2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA