Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 1387-1414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347224

RESUMO

Understanding how chromatin organisation is duplicated on the two daughter strands is a central question in epigenetics. In mammals, following the passage of the replisome, nucleosomes lose their defined positioning and transcription contributes to their re-organisation. However, whether transcription plays a greater role in the organization of chromatin following DNA replication remains unclear. Here we analysed protein re-association with newly replicated DNA upon inhibition of transcription using iPOND coupled to quantitative mass spectrometry. We show that nucleosome assembly and the re-establishment of most histone modifications are uncoupled from transcription. However, RNAPII acts to promote the re-association of hundreds of proteins with newly replicated chromatin via pathways that are not observed in steady-state chromatin. These include ATP-dependent remodellers, transcription factors and histone methyltransferases. We also identify a set of DNA repair factors that may handle transcription-replication conflicts during normal transcription in human non-transformed cells. Our study reveals that transcription plays a greater role in the organization of chromatin post-replication than previously anticipated.


Assuntos
Cromatina , RNA Polimerase II , Animais , Humanos , RNA Polimerase II/metabolismo , Replicação do DNA , Nucleossomos , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Mamíferos/genética , Mamíferos/metabolismo
2.
Nature ; 627(8002): 204-211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383787

RESUMO

Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)-bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1-4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change 'glues' BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target-ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4-IBG1-DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.


Assuntos
Desenho de Fármacos , Proteólise , Especificidade por Substrato , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas que Contêm Bromodomínio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Quimera de Direcionamento de Proteólise , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ligação Proteica , Domínios Proteicos
3.
Nucleic Acids Res ; 50(19): 11214-11228, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36305833

RESUMO

Type I CRISPR systems are the most common CRISPR type found in bacteria. They use a multisubunit effector, guided by crRNA, to detect and bind dsDNA targets, forming an R-loop and recruiting the Cas3 enzyme to facilitate target DNA destruction, thus providing immunity against mobile genetic elements. Subtypes have been classified into families A-G, with type I-G being the least well understood. Here, we report the composition, structure and function of the type I-G Cascade CRISPR effector from Thioalkalivibrio sulfidiphilus, revealing key new molecular details. The unique Csb2 subunit processes pre-crRNA, remaining bound to the 3' end of the mature crRNA, and seven Cas7 subunits form the backbone of the effector. Cas3 associates stably with the effector complex via the Cas8g subunit and is important for target DNA recognition. Structural analysis by cryo-Electron Microscopy reveals a strikingly curved backbone conformation with Cas8g spanning the belly of the structure. These biochemical and structural insights shed new light on the diversity of type I systems and open the way to applications in genome engineering.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Ectothiorhodospiraceae , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , DNA/química , Proteínas de Bactérias/química
4.
EMBO J ; 41(21): e111015, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36121123

RESUMO

Protein UFMylation, i.e., post-translational modification with ubiquitin-fold modifier 1 (UFM1), is essential for cellular and endoplasmic reticulum homeostasis. Despite its biological importance, we have a poor understanding of how UFM1 is conjugated onto substrates. Here, we use a rebuilding approach to define the minimal requirements of protein UFMylation. We find that the reported cognate E3 ligase UFL1 is inactive on its own and instead requires the adaptor protein UFBP1 to form an active E3 ligase complex. Structure predictions suggest the UFL1/UFBP1 complex to be made up of winged helix (WH) domain repeats. We show that UFL1/UFBP1 utilizes a scaffold-type E3 ligase mechanism that activates the UFM1-conjugating E2 enzyme, UFC1, for aminolysis. Further, we characterize a second adaptor protein CDK5RAP3 that binds to and forms an integral part of the ligase complex. Unexpectedly, we find that CDK5RAP3 inhibits UFL1/UFBP1 ligase activity in vitro. Results from reconstituting ribosome UFMylation suggest that CDK5RAP3 functions as a substrate adaptor that directs UFMylation to the ribosomal protein RPL26. In summary, our reconstitution approach reveals the biochemical basis of UFMylation and regulatory principles of this atypical E3 ligase complex.


Assuntos
Retículo Endoplasmático , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Retículo Endoplasmático/metabolismo , Processamento de Proteína Pós-Traducional , Estresse do Retículo Endoplasmático/fisiologia , Ligação Proteica , Proteínas Ribossômicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
5.
Cell Rep ; 37(5): 109943, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731603

RESUMO

The ARID1A subunit of SWI/SNF chromatin remodeling complexes is a potent tumor suppressor. Here, a degron is applied to detect rapid loss of chromatin accessibility at thousands of loci where ARID1A acts to generate accessible minidomains of nucleosomes. Loss of ARID1A also results in the redistribution of the coactivator EP300. Co-incident EP300 dissociation and lost chromatin accessibility at enhancer elements are highly enriched adjacent to rapidly downregulated genes. In contrast, sites of gained EP300 occupancy are linked to genes that are transcriptionally upregulated. These chromatin changes are associated with a small number of genes that are differentially expressed in the first hours following loss of ARID1A. Indirect or adaptive changes dominate the transcriptome following growth for days after loss of ARID1A and result in strong engagement with cancer pathways. The identification of this hierarchy suggests sites for intervention in ARID1A-driven diseases.


Assuntos
Proteínas de Ligação a DNA/deficiência , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/metabolismo , Lesões Pré-Cancerosas/metabolismo , Fatores de Transcrição/deficiência , Transcrição Gênica , Ativação Transcricional , Animais , Sítios de Ligação , Linhagem Celular , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Nucleossomos/genética , Lesões Pré-Cancerosas/genética , Proteólise , Fatores de Tempo , Fatores de Transcrição/genética
6.
Bio Protoc ; 11(15): e4106, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458400

RESUMO

Polysome profile analysis is a popular method for separating polysomes and ribosomal subunits and is typically achieved using a sucrose density gradient (SDG). This has remained the gold standard method since ribosomes were first discovered; however, this method is time-consuming and requires multiple steps from making the gradient and long ultracentrifugation to collecting and analyzing the fractions. Each of these steps in the SDG workflow can introduce potential technical variation that affects the reproducibility of gradient profiles between samples. To address these limitations, we have developed a flexible, alternative approach for analyzing polysomes and ribosomal subunits based on size-exclusion chromatography (SEC), termed 'Ribo Mega-SEC.' In comparison with the SDG method, Ribo Mega-SEC involves a single step using ultra-high-performance liquid chromatography (uHPLC). The entire workflow, from injecting the lysate to collecting the fractions, can be performed in as little as 15 min, with high reproducibility. By varying the pore size of the SEC column, polysomes and ribosomal subunits can be separated using extracts from either human or mouse cultured cell lines or from tissue samples, Drosophila embryos, or budding yeast. The resulting separated fractions are suitable for analysis using a wide range of subsequent analytical techniques including mass spectrometry (MS)-based proteomics, RNA-Seq, electron microscopy (EM), and multiple biochemical assays.

7.
Essays Biochem ; 63(1): 45-58, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30967479

RESUMO

ATP-dependent chromatin remodelling enzymes play a fundamental role in determining how nucleosomes are organised, and render DNA sequences accessible to interacting proteins, thereby enabling precise regulation of eukaryotic genes. Remodelers conserved from yeast to humans are classified into four families based on the domains and motifs present in their ATPase subunits. Insights into overall assembly and the mode of interaction to the nucleosome by these different families of remodelers remained limited due to the complexity of obtaining structural information on these challenging samples. Electron microscopy and single-particle methods have made advancement and uncovered vital structural information on the number of remodelling complexes. In this article, we highlight some of the recent structural work that advanced our understanding on the mechanisms and biological functions of these ATP-dependent remodelling machines.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Nucleossomos/metabolismo , Animais , DNA/metabolismo , Histonas/metabolismo , Humanos
8.
Elife ; 72018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095066

RESUMO

We describe Ribo Mega-SEC, a powerful approach for the separation and biochemical analysis of mammalian polysomes and ribosomal subunits using Size Exclusion Chromatography and uHPLC. Using extracts from either cells, or tissues, polysomes can be separated within 15 min from sample injection to fraction collection. Ribo Mega-SEC shows translating ribosomes exist predominantly in polysome complexes in human cell lines and mouse liver tissue. Changes in polysomes are easily quantified between treatments, such as the cellular response to amino acid starvation. Ribo Mega-SEC is shown to provide an efficient, convenient and highly reproducible method for studying functional translation complexes. We show that Ribo Mega-SEC is readily combined with high-throughput MS-based proteomics to characterize proteins associated with polysomes and ribosomal subunits. It also facilitates isolation of complexes for electron microscopy and structural studies.


Assuntos
Polirribossomos/genética , Biossíntese de Proteínas , Ribossomos/genética , Aminoácidos/química , Aminoácidos/genética , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Camundongos , Polirribossomos/química , Proteômica , Ribossomos/química
9.
Elife ; 72018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30079888

RESUMO

ATP-dependent chromatin remodelling proteins represent a diverse family of proteins that share ATPase domains that are adapted to regulate protein-DNA interactions. Here, we present structures of the Saccharomyces cerevisiae Chd1 protein engaged with nucleosomes in the presence of the transition state mimic ADP-beryllium fluoride. The path of DNA strands through the ATPase domains indicates the presence of contacts conserved with single strand translocases and additional contacts with both strands that are unique to Snf2 related proteins. The structure provides connectivity between rearrangement of ATPase lobes to a closed, nucleotide bound state and the sensing of linker DNA. Two turns of linker DNA are prised off the surface of the histone octamer as a result of Chd1 binding, and both the histone H3 tail and ubiquitin conjugated to lysine 120 are re-orientated towards the unravelled DNA. This indicates how changes to nucleosome structure can alter the way in which histone epitopes are presented.


Assuntos
Adenosina Trifosfatases/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cromatina/genética , Histonas/genética , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Ubiquitina/genética
10.
Nature ; 556(7701): 381-385, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643511

RESUMO

Ubiquitination is initiated by transfer of ubiquitin (Ub) from a ubiquitin-activating enzyme (E1) to a ubiquitin-conjugating enzyme (E2), producing a covalently linked intermediate (E2-Ub) 1 . Ubiquitin ligases (E3s) of the 'really interesting new gene' (RING) class recruit E2-Ub via their RING domain and then mediate direct transfer of ubiquitin to substrates 2 . By contrast, 'homologous to E6-AP carboxy terminus' (HECT) E3 ligases undergo a catalytic cysteine-dependent transthiolation reaction with E2-Ub, forming a covalent E3-Ub intermediate3,4. Additionally, RING-between-RING (RBR) E3 ligases have a canonical RING domain that is linked to an ancillary domain. This ancillary domain contains a catalytic cysteine that enables a hybrid RING-HECT mechanism 5 . Ubiquitination is typically considered a post-translational modification of lysine residues, as there are no known human E3 ligases with non-lysine activity. Here we perform activity-based protein profiling of HECT or RBR-like E3 ligases and identify the neuron-associated E3 ligase MYCBP2 (also known as PHR1) as the apparent single member of a class of RING-linked E3 ligase with esterification activity and intrinsic selectivity for threonine over serine. MYCBP2 contains two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates. Crystallographic characterization of this class of E3 ligase, which we designate RING-Cys-relay (RCR), provides insights into its mechanism and threonine selectivity. These findings implicate non-lysine ubiquitination in cellular regulation of higher eukaryotes and suggest that E3 enzymes have an unappreciated mechanistic diversity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biocatálise , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Cisteína/metabolismo , Esterificação , Células HEK293 , Humanos , Lisina/metabolismo , Modelos Moleculares , Domínios Proteicos , Proteômica , Serina/metabolismo , Especificidade por Substrato , Treonina/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
11.
Open Biol ; 7(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29142109

RESUMO

Regulation of protein phosphatase activity by endogenous protein inhibitors is an important mechanism to control protein phosphorylation in cells. We recently identified Biorientation defective 1 (Bod1) as a small protein inhibitor of protein phosphatase 2A containing the B56 regulatory subunit (PP2A-B56). This phosphatase controls the amount of phosphorylation of several kinetochore proteins and thus the establishment of load-bearing chromosome-spindle attachments in time for accurate separation of sister chromatids in mitosis. Like PP2A-B56, Bod1 directly localizes to mitotic kinetochores and is required for correct segregation of mitotic chromosomes. In this report, we have probed the spatio-temporal regulation of Bod1 during mitotic progression. Kinetochore localization of Bod1 increases from nuclear envelope breakdown until metaphase. Phosphorylation of Bod1 at threonine 95 (T95), which increases Bod1's binding to and inhibition of PP2A-B56, peaks in prometaphase when PP2A-B56 localization to kinetochores is highest. We demonstrate here that kinetochore targeting of Bod1 depends on the outer kinetochore protein Ndc80 and not PP2A-B56. Crucially, Bod1 depletion functionally affects Ndc80 phosphorylation at the N-terminal serine 55 (S55), as well as a number of other phosphorylation sites within the outer kinetochore, including Knl1 at serine 24 and 60 (S24, S60), and threonine T943 and T1155 (T943, T1155). Therefore, Ndc80 recruits a phosphatase inhibitor to kinetochores which directly feeds forward to regulate Ndc80, and Knl1 phosphorylation, including sites that mediate the attachment of microtubules to kinetochores.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Proteínas do Citoesqueleto , Retroalimentação Fisiológica , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional
12.
Nat Struct Mol Biol ; 24(5): 475-483, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28414322

RESUMO

RING-between-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR ligase is Parkin, mutations in which lead to early-onset hereditary Parkinsonism. Parkin and other RBR ligases share a catalytic RBR module but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during Parkin activation. However, current data on active RBR ligases reflect the absence of regulatory domains. Therefore, it remains unclear how individual RBR ligases are activated, and whether they share a common mechanism. We now report the crystal structure of a human Parkin-phosphoubiquitin complex, which shows that phosphoubiquitin binding induces movement in the 'in-between RING' (IBR) domain to reveal a cryptic ubiquitin-binding site. Mutation of this site negatively affects Parkin's activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, which suggests a role for interdomain association in the RBR ligase mechanism.


Assuntos
Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Análise Mutacional de DNA , Humanos , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ubiquitina-Proteína Ligases/genética
13.
Elife ; 62017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332978

RESUMO

The yeast Chd1 protein acts to position nucleosomes across genomes. Here, we model the structure of the Chd1 protein in solution and when bound to nucleosomes. In the apo state, the DNA-binding domain contacts the edge of the nucleosome while in the presence of the non-hydrolyzable ATP analog, ADP-beryllium fluoride, we observe additional interactions between the ATPase domain and the adjacent DNA gyre 1.5 helical turns from the dyad axis of symmetry. Binding in this conformation involves unravelling the outer turn of nucleosomal DNA and requires substantial reorientation of the DNA-binding domain with respect to the ATPase domains. The orientation of the DNA-binding domain is mediated by sequences in the N-terminus and mutations to this part of the protein have positive and negative effects on Chd1 activity. These observations indicate that the unfavorable alignment of C-terminal DNA-binding region in solution contributes to an auto-inhibited state.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
14.
Nucleic Acids Res ; 44(13): 6157-72, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27036862

RESUMO

Vps75 is a histone chaperone that has been historically characterized as homodimer by X-ray crystallography. In this study, we present a crystal structure containing two related tetrameric forms of Vps75 within the crystal lattice. We show Vps75 associates with histones in multiple oligomers. In the presence of equimolar H3-H4 and Vps75, the major species is a reconfigured Vps75 tetramer bound to a histone H3-H4 tetramer. However, in the presence of excess histones, a Vps75 dimer bound to a histone H3-H4 tetramer predominates. We show the Vps75-H3-H4 interaction is compatible with the histone chaperone Asf1 and deduce a structural model of the Vps75-Asf1-H3-H4 (VAH) co-chaperone complex using the Pulsed Electron-electron Double Resonance (PELDOR) technique and cross-linking MS/MS distance restraints. The model provides a molecular basis for the involvement of both Vps75 and Asf1 in Rtt109 catalysed histone H3 K9 acetylation. In the absence of Asf1 this model can be used to generate a complex consisting of a reconfigured Vps75 tetramer bound to a H3-H4 tetramer. This provides a structural explanation for many of the complexes detected biochemically and illustrates the ability of Vps75 to interact with dimeric or tetrameric H3-H4 using the same interaction surface.


Assuntos
Proteínas de Ciclo Celular/química , Chaperonas de Histonas/química , Histonas/química , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
EMBO J ; 34(20): 2506-21, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26254304

RESUMO

The PARK2 gene is mutated in 50% of autosomal recessive juvenile parkinsonism (ARJP) cases. It encodes parkin, an E3 ubiquitin ligase of the RBR family. Parkin exists in an autoinhibited state that is activated by phosphorylation of its N-terminal ubiquitin-like (Ubl) domain and binding of phosphoubiquitin. We describe the 1.8 Å crystal structure of human parkin in its fully inhibited state and identify the key interfaces to maintain parkin inhibition. We identify the phosphoubiquitin-binding interface, provide a model for the phosphoubiquitin-parkin complex and show how phosphorylation of the Ubl domain primes parkin for optimal phosphoubiquitin binding. Furthermore, we demonstrate that the addition of phosphoubiquitin leads to displacement of the Ubl domain through loss of structure, unveiling a ubiquitin-binding site used by the E2~Ub conjugate, thus leading to active parkin. We find the role of the Ubl domain is to prevent parkin activity in the absence of the phosphorylation signals, and propose a model for parkin inhibition, optimization for phosphoubiquitin recruitment, release of inhibition by the Ubl domain and engagement with an E2~Ub conjugate. Taken together, this model provides a mechanistic framework for activating parkin.


Assuntos
Ativação Enzimática/genética , Modelos Biológicos , Modelos Moleculares , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Sítios de Ligação/genética , Calorimetria , Catálise , Cromatografia em Gel , Cristalização , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica , Ubiquitina/metabolismo
16.
Cell ; 154(3): 490-503, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911317

RESUMO

Chromatin provides both a means to accommodate a large amount of genetic material in a small space and a means to package the same genetic material in different chromatin states. Transitions between chromatin states are enabled by chromatin-remodeling ATPases, which catalyze a diverse range of structural transformations. Biochemical evidence over the last two decades suggests that chromatin-remodeling activities may have emerged by adaptation of ancient DNA translocases to respond to specific features of chromatin. Here, we discuss such evidence and also relate mechanistic insights to our understanding of how chromatin-remodeling enzymes enable different in vivo processes.


Assuntos
Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Eucariotos/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , DNA/metabolismo , Humanos , Nucleossomos/metabolismo , Transferases/metabolismo
17.
EMBO J ; 30(13): 2596-609, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21623345

RESUMO

The ATP-dependent chromatin-remodelling enzyme Chd1 is a 168-kDa protein consisting of a double chromodomain, Snf2-related ATPase domain, and a C-terminal DNA-binding domain. Here, we show the DNA-binding domain is required for Saccharomyces cerevisiae Chd1 to bind and remodel nucleosomes. The crystal structure of this domain reveals the presence of structural homology to SANT and SLIDE domains previously identified in ISWI remodelling enzymes. The presence of these domains in ISWI and Chd1 chromatin-remodelling enzymes may provide a means of efficiently harnessing the action of the Snf2-related ATPase domain for the purpose of nucleosome spacing and provide an explanation for partial redundancy between these proteins. Site directed mutagenesis was used to identify residues important for DNA binding and generate a model describing the interaction of this domain with DNA. Through inclusion of Chd1 sequences in homology searches SLIDE domains were identified in CHD6-9 proteins. Point mutations to conserved amino acids within the human CHD7 SLIDE domain have been identified in patients with CHARGE syndrome.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Síndrome CHARGE/genética , Montagem e Desmontagem da Cromatina/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Nucleossomos/metabolismo , Organismos Geneticamente Modificados , Filogenia , Mutação Puntual , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
18.
J Mol Biol ; 383(3): 603-14, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18773907

RESUMO

Staphylococcus aureus pathogenesis depends on a specialized protein secretion system (ESX-1) that delivers a range of virulence factors to assist infectivity. We report the characterization of two such factors, EsxA and EsxB, small acidic dimeric proteins carrying a distinctive WXG motif. EsxA crystallized in triclinic and monoclinic forms and high-resolution structures were determined. The asymmetric unit of each crystal form is a dimer. The EsxA subunit forms an elongated cylindrical structure created from side-by-side alpha-helices linked with a hairpin bend formed by the WXG motif. Approximately 25% of the solvent accessible surface area of each subunit is involved in interactions, predominantly hydrophobic, with the partner subunit. Secondary-structure predictions suggest that EsxB displays a similar structure. The WXG motif helps to create a shallow cleft at each end of the dimer, forming a short beta-sheet-like feature with an N-terminal segment of the partner subunit. Structural and sequence comparisons, exploiting biological data on related proteins found in Mycobacterium tuberculosis, suggest that this family of proteins may contribute to pathogenesis by transporting protein cargo through the ESX-1 system exploiting a C-terminal secretion signal and/or are capable of acting as adaptor proteins to facilitate interactions with host receptor proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estrutura Quaternária de Proteína , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Staphylococcus aureus/genética , Fatores de Virulência/genética
19.
FEBS J ; 274(1): 275-86, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17222187

RESUMO

Crystal structures of recombinant Lactococcus lactis 6-phosphogluconate dehydrogenase (LlPDH) in complex with substrate, cofactor, product and inhibitors have been determined. LlPDH shares significant sequence identity with the enzymes from sheep liver and the protozoan parasite Trypanosoma brucei for which structures have been reported. Comparisons indicate that the key residues in the active site are highly conserved, as are the interactions with the cofactor and the product ribulose 5-phosphate. However, there are differences in the conformation of the substrate 6-phosphogluconate which may reflect distinct states relevant to catalysis. Analysis of the complex formed with the potent inhibitor 4-phospho-d-erythronohydroxamic acid, suggests that this molecule does indeed mimic the high-energy intermediate state that it was designed to. The analysis also identified, as a contaminant by-product of the inhibitor synthesis, 4-phospho-d-erythronamide, which binds in similar fashion. LlPDH can now serve as a model system for structure-based inhibitor design targeting the enzyme from Trypanosoma species.


Assuntos
Lactococcus lactis/enzimologia , Fosfogluconato Desidrogenase/química , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Coenzimas/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Lactococcus lactis/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosfogluconato Desidrogenase/metabolismo , Conformação Proteica , Especificidade por Substrato , Fosfatos Açúcares/química , Trypanosoma brucei brucei/metabolismo
20.
J Mol Biol ; 359(2): 347-57, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16630629

RESUMO

Crystal structures of peroxisomal Arabidopsis thaliana 3-ketoacyl-CoA thiolase (AtKAT), an enzyme of fatty acid beta-oxidation, are reported. The subunit, a typical thiolase, is a combination of two similar alpha/beta domains capped with a loop domain. The comparison of AtKAT with the Saccharomyces cerevisiae homologue (ScKAT) structure reveals a different placement of subunits within the functional dimers and that a polypeptide segment forming an extended loop around the open catalytic pocket of ScKAT converts to alpha-helix in AtKAT, and occludes the active site. A disulfide is formed between Cys192, on this helix, and Cys138, a catalytic residue. Access to Cys138 is determined by the structure of this polypeptide segment. AtKAT represents an oxidized, previously unknown inactive form, whilst ScKAT is the reduced and active enzyme. A high level of sequence conservation is observed, including Cys192, in eukaryotic peroxisomal, but not mitochondrial or prokaryotic KAT sequences, for this labile loop/helix segment. This indicates that KAT activity in peroxisomes is influenced by a disulfide/dithiol change linking fatty acid beta-oxidation with redox regulation.


Assuntos
Acetil-CoA C-Aciltransferase/química , Proteínas de Arabidopsis/química , Ácidos Graxos/química , Peroxissomos/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA