Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108601, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38188513

RESUMO

The monkeypox virus (Mpoxv) Clade IIb viruses that caused an outbreak in 2017-18 in Nigeria and its genetically related viruses have been detected in many countries and caused multi-country outbreak in 2022. Since the pandemic-causing Mpoxv Clade IIb viruses are closely related to Clade IIa viruses which mostly cause endemic, the Clade IIb Mpoxv might have certain specific genetic variations that are still largely unknown. Here, we have systematically analyzed genetic alterations in different clades of Mpox viruses. The results suggest that the Mpoxv Clade IIb have genetic variations in terms of genomic gaps, frameshift mutations, in-frame nonsense mutations, amino acid tandem repeats, and APOBEC3 mutations. Further, we observed specific genetic variations in the multiple genes specific for Clade I and Clade IIb, and exclusive genetic variations for Clade IIa and Clade IIb. Collectively, findings shed light on the evolution and genetic variations in the outbreak of 2022 causing Mpoxv Clade IIb.

2.
Nucleic Acids Res ; 52(3): 1450-1470, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153196

RESUMO

The regulator of telomere elongation helicase 1 (RTEL1) plays roles in telomere DNA maintenance, DNA repair, and genome stability by dismantling D-loops and unwinding G-quadruplex structures. RTEL1 comprises a helicase domain, two tandem harmonin homology domains 1&2 (HHD1 and HHD2), and a Zn2+-binding RING domain. In vitro D-loop disassembly by RTEL1 is enhanced in the presence of replication protein A (RPA). However, the mechanism of RTEL1 recruitment at non-telomeric D-loops remains unknown. In this study, we have unravelled a direct physical interaction between RTEL1 and RPA. Under DNA damage conditions, we showed that RTEL1 and RPA colocalise in the cell. Coimmunoprecipitation showed that RTEL1 and RPA interact, and the deletion of HHDs of RTEL1 significantly reduced this interaction. NMR chemical shift perturbations (CSPs) showed that RPA uses its 32C domain to interact with the HHD2 of RTEL1. Interestingly, HHD2 also interacted with DNA in the in vitro experiments. HHD2 structure was determined using X-ray crystallography, and NMR CSPs mapping revealed that both RPA 32C and DNA competitively bind to HHD2 on an overlapping surface. These results establish novel roles of accessory HHDs in RTEL1's functions and provide mechanistic insights into the RPA-mediated recruitment of RTEL1 to DNA repair sites.


Assuntos
DNA Helicases , Proteína de Replicação A , Telômero , DNA/genética , Reparo do DNA , Replicação do DNA , Proteína de Replicação A/metabolismo , Telômero/metabolismo , Humanos , DNA Helicases/química , DNA Helicases/metabolismo
3.
Bio Protoc ; 13(4): e4616, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36845532

RESUMO

Cardiac fibroblasts are one of the major constituents of a healthy heart. Cultured cardiac fibroblasts are a crucial resource for conducting studies on cardiac fibrosis. The existing methods for culturing cardiac fibroblasts involve complicated steps and require special reagents and instruments. The major problems faced with primary cardiac fibroblast culture are the low yield and viability of the cultured cells and contamination with other heart cell types, including cardiomyocytes, endothelial cells, and immune cells. Numerous parameters, including the quality of the reagents used for the culture, conditions maintained during digestion of the cardiac tissue, composition of the digestion mixture used, and age of the pups used for culture determine the yield and purity of the cultured cardiac fibroblasts. The present study describes a detailed and simplified protocol to isolate and culture primary cardiac fibroblasts from neonatal murine pups. We demonstrate the transdifferentiation of fibroblasts into myofibroblasts through transforming growth factor (TGF)-ß1 treatment, representing the changes in fibroblasts during cardiac fibrosis. These cells can be used to study the various aspects of cardiac fibrosis, inflammation, fibroblast proliferation, and growth.

4.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194900, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36410688

RESUMO

Hypoxic response to low oxygen levels is characteristic of most solid cancers. Hypoxia-inducible factors (HIFs) regulate cellular metabolism, survival, proliferation, and cancer stem cell growth during hypoxia. The genome-wide analysis identified HAT1, a type B histone acetyltransferase, as an upregulated and essential gene in glioblastoma (GBM). GSEA analysis of differentially regulated genes in HAT1 silenced cells identified significant depletion of "hypoxia" gene sets. Hypoxia conditions induced HIF2A, not HIF1A protein levels in glioma cells in a HAT1-dependent manner. HAT1 and HIF2A interacted with each other and occupied the promoter of VEGFA, a bonafide HIF1A/HIF2A target. Acetylation of K512 and K596 residues by HAT1 is essential for HIF2A stabilization under normoxia and hypoxia as HIF2A carrying acetylation mimic mutations at either of these residues (H512Q or K596Q) showed stable expression in HAT1 silenced cells under normoxia and hypoxia conditions. Finally, we demonstrate that the HAT1-HIF2A axis is essential for hypoxia-promoted cancer stem cell maintenance and reprogramming. Thus, our study identifies that the HAT1-dependent acetylation of HIF2A is vital to executing the hypoxia-induced cell survival and cancer stem cell growth, therefore proposing the HAT1-HIF2A axis as a potential therapeutic target.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Glioblastoma , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Hipóxia
5.
Curr Protoc ; 2(12): e626, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36571583

RESUMO

The heart relies predominantly on the use of fatty acids to derive energy. Metabolic disorders such as obesity, insulin resistance, and diabetes pose a major risk factor for the development of heart failure. Dysregulation of lipid metabolism observed in these diseases manifests as cardiac lipotoxicity, and is associated with cardiac dysfunction. The alarming rise in the incidence of these metabolic disorders warrants the need for tools to investigate the underlying molecular mechanisms. In this article, we describe a confocal microscopy-based approach to monitor fatty acid uptake and lipid accumulation in vitro, in neonatal murine cardiomyocytes and H9c2 cells. The protocol for assessment of fatty acid uptake relies on the use of BODIPY FL C 12™ to study the kinetics of fatty acid uptake via real-time imaging of fatty acid uptake in live cells. Importantly, it circumvents the need for radioactive labeling of fatty acids to evaluate their uptake. Similarly, the protocol for assessment of lipid accumulation relies on the use of BODIPY™ 493/503 to stain the cytosolic neutral lipid population in fixed cells. We couple these confocal microscopy-based approaches with fluorescence intensity analysis using FIJI to quantify fatty acid uptake and lipid accumulation in vitro. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Assessment of fatty acid uptake Basic Protocol 2: Assessment of lipid accumulation.


Assuntos
Diabetes Mellitus , Ácidos Graxos , Camundongos , Animais , Ácidos Graxos/metabolismo , Miócitos Cardíacos/metabolismo , Células Cultivadas , Diabetes Mellitus/metabolismo , Microscopia Confocal
6.
Curr Protoc ; 2(11): e616, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36440976

RESUMO

Besides genetic disorders, skeletal muscle atrophy mainly occurs as a consequence of underlying conditions such as prolonged inactivity, aging, and metabolic diseases, ultimately contributing to the risk of disability. Disturbances in cellular and molecular mechanisms involved in proteolysis and protein synthesis underpin muscle fiber shrinkage and decreased muscle fiber diameter. Stress-induced primary myotube culture is an established model for studying muscle atrophy. An in vitro model is an essential criterion in establishing preliminary data in a cell-autonomous manner that can later be validated using in vivo models. Here, we describe protocols for the isolation, culture, and differentiation of primary murine myotubes and the induction of myotube atrophy using dexamethasone, a synthetic corticosteroid. We further elaborate the procedure to validate degenerative parameters, such as assessing muscle fiber diameter, expression of muscle atrophy genes, and protein synthesis status under dexamethasone treatment. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Isolation and culture of primary myoblasts from rat or mouse pups Support Protocol 1: Preparation of coated tissue culture ware Support Protocol 2: Subculture of myoblasts Basic Protocol 2: Induction and assessment of myotube atrophy.


Assuntos
Fibras Musculares Esqueléticas , Atrofia Muscular , Camundongos , Ratos , Animais , Mioblastos , Biossíntese de Proteínas , Dexametasona/farmacologia
7.
Subcell Biochem ; 100: 337-360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301499

RESUMO

Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family with deacetylase, deacylase, and mono-ADP-ribosyl-transferase activities. It is a multitasking chromatin-associated protein regulating different cellular and physiological functions in cells. Specifically, SIRT6 dysfunction is implicated in several aging-related human diseases, including cancer. Studies indicate that SIRT6 has a tumor-specific role, and it is considered a tumor suppressor as well as a tumor growth inducer, depending on the type of cancer. In this chapter, we review the role of SIRT6 in metabolism, genomic stability, and cancer. Further, we provide an insight into the interplay of the tumor-suppressing and oncogenic roles of SIRT6 in cancer. Additionally, we discuss the use of small-molecule SIRT6 modulators as potential therapeutics.


Assuntos
Neoplasias , Sirtuínas , Humanos , Epigênese Genética , Epigenômica , Neoplasias/genética , Neoplasias/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
8.
Andrologia ; 54(8): e14451, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35484731

RESUMO

The aim of the present study was to identify fertility associated sperm membrane proteins in crossbred bulls. Sperm membrane proteins from high- and low-fertile Holstein Friesian crossbred bulls (n = 3 each) were subjected to high-throughput liquid chromatography-mass spectrometry (LC-MS/MS) for comparative proteomic analysis. Proteomic profiling identified a total of 456 proteins in crossbred bull spermatozoa; it was found that 108 proteins were up regulated while 26 proteins were down regulated (>1.5-folds) in spermatozoa from low- compared to high-fertile bulls. Gene ontology classification revealed that upregulated proteins in low-fertile bulls were involved in biological process such as oxidation-reduction process (p = 3.14E-06), fusion of sperm to egg plasma membrane (p = 7.51E-04), sperm motility (p = 0.03), and capacitation (p = 0.09), while down regulated proteins were associated with transport (p = 6.94E-04), superoxide metabolic process (p = 0.02), and tricarboxylic acid cycle (p = 0.04). KEGG pathway analysis revealed that oxidative phosphorylation and tricarboxylic acid cycle pathways are the most significantly affected pathway in low-fertile bulls. It was concluded that expression of proteins associated with oxidative phosphorylation and tricarboxylic acid cycle pathways were altered in low-fertile crossbred bulls, and expression levels of SPATA19, ELSPBP1, ACRBP, CLU, SUCLA2, and SPATC1 could aid in assessing potential fertility of crossbred bulls.


Assuntos
Proteômica , Motilidade dos Espermatozoides , Animais , Bovinos , Cromatografia Líquida , Fertilidade , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Espectrometria de Massas em Tandem
9.
Front Cardiovasc Med ; 9: 850340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369299

RESUMO

The heart is a highly metabolically active organ that predominantly utilizes fatty acids as an energy substrate. The heart also derives some part of its energy by oxidation of other substrates, including glucose, lactose, amino acids and ketones. The critical feature of cardiac pathology is metabolic remodeling and loss of metabolic flexibility. Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins (SIRT1 to SIRT7), with NAD+ dependent deacetylase activity. SIRT3 is expressed in high levels in healthy hearts but downregulated in the aged or diseased hearts. Experimental evidence shows that increasing SIRT3 levels or activity can ameliorate several cardiac pathologies. The primary deacetylation targets of SIRT3 are mitochondrial proteins, most of which are involved in energy metabolism. Thus, SIRT3 improves cardiac health by modulating cardiac energetics. In this review, we discuss the essential role of SIRT3 in regulating cardiac metabolism in the context of physiology and pathology. Specifically, we summarize the recent advancements that emphasize the critical role of SIRT3 as a master regulator of cardiac metabolism. We also present a comprehensive view of all known activators of SIRT3, and elaborate on their therapeutic potential to ameliorate energetic abnormalities in various cardiac pathologies.

10.
FASEB J ; 35(10): e21841, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582046

RESUMO

Sirtuins are a family of NAD+ -dependent deacetylases implicated in a wide variety of age-associated pathologies, including cardiovascular disorders. Among the seven mammalian sirtuins, SIRT2 modulates various cellular processes through the deacetylation or deacylation of their target proteins. Notably, the levels of SIRT2 in the heart decline with age and other pathological conditions, leading to cardiovascular dysfunction. In the present review, we discuss the emerging roles of SIRT2 in cardiovascular dysfunction and heart failure associated with factors like age, hypertension, oxidative stress, and diabetes. We also discuss the potential of using inhibitors to study the unexplored role of SIRT2 in the heart. While SIRT2 undoubtedly plays a crucial role in the cardiovascular system, its functions are only beginning to be understood, making it an attractive candidate for further research in the field.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Estresse Oxidativo , Sirtuína 2/metabolismo , Acetilação , Animais , Doenças Cardiovasculares/metabolismo , Humanos
11.
Curr Protoc ; 1(7): e196, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34289259

RESUMO

The cardiomyocyte is the main cell type in the heart responsible for its contractile function. Culturing primary cardiomyocytes from mammalian sources to study their function remains challenging as they are terminally differentiated and cease to multiply soon after birth. The major technical hurdles associated with primary cardiomyocyte culture include attaining high yields, obtaining healthy/viable cells that show spontaneous contractions upon culture, and avoiding contamination by non-myocyte cardiac cell types such as fibroblasts and endothelial cells. The yield and the quality of the cardiomyocytes obtained are impacted by a variety of factors, such as the purity of the reagents, composition of the digestion mixture, the digestion conditions, and the temperature of the tissue during different steps of isolation. Here, we provide a simplified workflow to isolate, culture, and maintain neonatal primary cardiomyocytes from rats/mice in culture dishes, which can then be used to study, for instance, cardiac hypertrophy and drug-induced cardiotoxicity. © 2021 Wiley Periodicals LLC. Basic Protocol: Isolation and culture of primary cardiomyocytes from rat/mouse pups Support Protocol: Coating of tissue culture plates with extracellular matrix substrates for efficient cardiomyocyte attachment.


Assuntos
Células Endoteliais , Miócitos Cardíacos , Animais , Cardiomegalia , Cardiotoxicidade , Diferenciação Celular , Camundongos , Ratos
12.
Cell Rep ; 35(9): 109190, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077730

RESUMO

Pathological lipid accumulation is often associated with enhanced uptake of free fatty acids via specific transporters in cardiomyocytes. Here, we identify SIRT6 as a critical transcriptional regulator of fatty acid transporters in cardiomyocytes. We find that SIRT6 deficiency enhances the expression of fatty acid transporters, leading to enhanced fatty acid uptake and lipid accumulation. Interestingly, the haploinsufficiency of SIRT6 is sufficient to induce the expression of fatty acid transporters and cause lipid accumulation in murine hearts. Mechanistically, SIRT6 depletion enhances the occupancy of the transcription factor PPARγ on the promoters of critical fatty acid transporters without modulating the acetylation of histone 3 at Lys 9 and Lys 56. Notably, the binding of SIRT6 to the DNA-binding domain of PPARγ is critical for regulating the expression of fatty acid transporters in cardiomyocytes. Our data suggest exploiting SIRT6 as a potential therapeutic target for protecting the heart from metabolic diseases.


Assuntos
Ácidos Graxos/metabolismo , PPAR gama/metabolismo , Sirtuínas/metabolismo , Transcrição Gênica , Adulto , Animais , Transporte Biológico/genética , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Insuficiência Cardíaca/genética , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , PPAR gama/química , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Sirtuínas/deficiência , Sirtuínas/genética
13.
Vitam Horm ; 115: 449-475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33706958

RESUMO

Aging constitutes a major risk factor toward the development of cardiovascular diseases (CVDs). The aging heart undergoes several changes at the molecular, cellular and physiological levels, which diminishes its contractile function and weakens stress tolerance. Further, old age increases the exposure to risk factors such as hypertension, diabetes and hypercholesterolemia. Notably, research in the past decades have identified FoxO subfamily of the forkhead transcription factors as key players in regulating diverse cellular processes linked to cardiac aging and diseases. In the present chapter, we discuss the important role of FoxO in the development of various aging-associated cardiovascular complications such as cardiac hypertrophy, cardiac fibrosis, heart failure, vascular dysfunction, atherosclerosis, hypertension and myocardial ischemia. Besides, we will also discuss the role of FoxO in cardiometabolic alterations, autophagy and proteasomal degradation, which are implicated in aging-associated cardiac dysfunction.


Assuntos
Doenças Cardiovasculares , Envelhecimento , Autofagia/fisiologia , Doenças Cardiovasculares/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Coração , Humanos
14.
Curr Protoc Mol Biol ; 133(1): e127, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33217166

RESUMO

Changes in protein synthesis occur under diverse physiological and pathological conditions. For example, translation can increase in response to growth signals or decrease in response to pathological states. Such changes have traditionally been measured by tracking the incorporation of radiolabeled amino acids. However, use of radioactivity is increasingly disfavored, and a simple and efficient puromycin-based, non-radioactive method called the SUnSET assay has gained popularity for measuring protein synthesis in diverse cell types and tissues. Here, we describe the principles, procedures, and troubleshooting steps for measuring protein synthesis using the SUnSET assay in cultured cells and mouse tissues. © 2020 Wiley Periodicals LLC Basic Protocol 1: Measuring protein synthesis in cultured cells by western blotting Support Protocol 1: Ponceau staining Support Protocol 2: Testing the specificity of the anti-puromycin antibody Basic Protocol 2: Measuring protein synthesis in cultured cells by immunofluorescence Basic Protocol 3: Measuring protein synthesis in mouse tissues by western blotting.


Assuntos
Técnicas de Cultura de Células , Biossíntese de Proteínas , Proteômica/métodos , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Camundongos , Especificidade de Órgãos , Puromicina , Coloração e Rotulagem
16.
PLoS Pathog ; 14(11): e1007437, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30452468

RESUMO

Salmonella being a successful pathogen, employs a plethora of immune evasion mechanisms. This contributes to pathogenesis, persistence and also limits the efficacy of available treatment. All these contributing factors call upon for new drug targets against Salmonella. For the first time, we have demonstrated that Salmonella upregulates sirtuin 2 (SIRT2), an NAD+ dependent deacetylase in dendritic cells (DC). SIRT2 upregulation results in translocation of NFκB p65 to the nucleus. This further upregulates NOS2 transcription and nitric oxide (NO) production. NO subsequently shows antibacterial activity and suppresses T cell proliferation. NOS2 mediated effect of SIRT2 is further validated by the absence of effect of SIRT2 inhibition in NOS2-/- mice. Inhibition of SIRT2 increases intracellular survival of the pathogen and enhances antigen presentation in vitro. However, in vivo SIRT2 inhibition shows lower bacterial organ burden and reduced tissue damage. SIRT2 knockout mice also demonstrate reduced bacterial organ burden compared to wild-type mice. Collectively, our results prove the role of SIRT2 in Salmonella pathogenesis and the mechanism of action. This can aid in designing of host-targeted therapeutics directed towards inhibition of SIRT2.


Assuntos
Evasão da Resposta Imune/imunologia , Salmonella/imunologia , Sirtuína 2/metabolismo , Acetilação/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Animais , Apresentação de Antígeno , Benzamidas , Células Dendríticas/imunologia , Quinase I-kappa B , Imunidade Inata/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Sirtuína 2/imunologia , Sulfonamidas , Fator de Transcrição RelA/metabolismo
17.
Mater Sci Eng C Mater Biol Appl ; 88: 104-114, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29636125

RESUMO

Toward engineering a cardiac patch, the objective of this work was to assess stem cell response to a three-dimensional (3D) nanofibrous scaffold and probe the underlying molecular mechanisms including both cell signaling and epigenetic changes. Cardiomyogenesis of human mesenchymal stem cells (hMSCs) in 3D poly(ε-caprolactone) (PCL) nanofibers and macroporous scaffolds was compared with two-dimensional (2D) PCL films. In addition, nanofiber mats of PCL and its blend with gelatin (PCL-Gel) were prepared with fibers of random or unidirectional alignment to assess the roles of topography (fibrous architecture and its alignment) and biochemical cue (cell-adhesive sites) in directing cell functions. Cells on 3D random nanofibers, exhibited elevated expression of known cardiac markers such as cardiac actinin, cardiac troponin and ß-myocardial heavy chain compared to cells on 2D films suggesting enhanced differentiation that was further accentuated on the aligned fibers. 3D macroporous scaffolds did not enhance the cardiomyogenic differentiation. However, minimal differences were noted between cells on PCL and PCL-Gel fibers, irrespective of alignment. Co-culture with neonatal rat cardiomyocytes induced beating in the differentiated cells. The use of small molecule inhibitors revealed that cytoskeletal elements F-actin, microtubules and downstream ROCK protein are essential for the cardiomyogenesis of hMSCs on the nanofibers. The activation of ERK, AKT and mTOR was observed during cardiomyogenesis. Interestingly, enhanced differentiation on the aligned nanofibers was associated with increased level of the histone deacytelase SIRT6 and decreased level of the acetylated histone H3K9 suggesting a role for epigenetic regulation. This study demonstrates that aligned nanofibrous scaffolds augment cardiomyogenic differentiation wherein topography plays a critical role in driving stem cell function. In addition, this study offers insight into molecular pathways driving the cellular response.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Nanofibras/química , Alicerces Teciduais/química , Adulto , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Porosidade
18.
J Biol Chem ; 293(14): 5281-5294, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29440391

RESUMO

Heart failure is an aging-associated disease that is the leading cause of death worldwide. Sirtuin family members have been largely studied in the context of aging and aging-associated diseases. Sirtuin 2 (SIRT2) is a cytoplasmic protein in the family of sirtuins that are NAD+-dependent class III histone deacetylases. In this work, we studied the role of SIRT2 in regulating nuclear factor of activated T-cells (NFAT) transcription factor and the development of cardiac hypertrophy. Confocal microscopy analysis indicated that SIRT2 is localized in the cytoplasm of cardiomyocytes and SIRT2 levels are reduced during pathological hypertrophy of the heart. SIRT2-deficient mice develop spontaneous pathological cardiac hypertrophy, remodeling, fibrosis, and dysfunction in an age-dependent manner. Moreover, young SIRT2-deficient mice develop exacerbated agonist-induced hypertrophy. In contrast, SIRT2 overexpression attenuated agonist-induced cardiac hypertrophy in cardiomyocytes in a cell-autonomous manner. Mechanistically, SIRT2 binds to and deacetylates NFATc2 transcription factor. SIRT2 deficiency stabilizes NFATc2 and enhances nuclear localization of NFATc2, resulting in increased transcription activity. Our results suggest that inhibition of NFAT rescues the cardiac dysfunction in SIRT2-deficient mice. Thus, our study establishes SIRT2 as a novel endogenous negative regulator of NFAT transcription factor.


Assuntos
Cardiomegalia/metabolismo , Fatores de Transcrição NFATC/metabolismo , Sirtuína 2/metabolismo , Acetilação , Animais , Regulação da Expressão Gênica/genética , Histona Desacetilases do Grupo III/metabolismo , Insuficiência Cardíaca/metabolismo , Homeostase , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Sirtuína 2/fisiologia
19.
J Biophotonics ; 9(1-2): 67-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25808727

RESUMO

Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis.


Assuntos
Sepse/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , Animais , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium/fisiologia , Sepse/tratamento farmacológico , Sepse/microbiologia , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/microbiologia , Tioglicolatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...