Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12676, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135391

RESUMO

Regular PCR testing of nasopharyngeal swabs from symptomatic individuals for SARS-CoV-2 virus has become the established method by which health services are managing the COVID-19 pandemic. Businesses such as AstraZeneca have also prioritised voluntary asymptomatic testing to keep workplaces safe and maintain supply of essential medicines to patients. We describe the development of an internal automated SARS-CoV-2 testing programme including the transformative introduction of saliva as an alternative sample type.


Assuntos
Doenças Assintomáticas/epidemiologia , Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias/prevenção & controle , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Saliva/virologia , Recursos Humanos , COVID-19/virologia , Testes Diagnósticos de Rotina/métodos , Humanos , Nasofaringe/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Manejo de Espécimes/métodos
2.
Semin Cancer Biol ; 35 Suppl: S104-S128, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25869441

RESUMO

One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.


Assuntos
Proliferação de Células/genética , Senescência Celular/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Instabilidade Genômica/efeitos dos fármacos , Humanos , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Telomerase/efeitos dos fármacos , Telomerase/genética , Proteína Supressora de Tumor p53/genética
3.
Exp Cell Res ; 319(13): 2103-2112, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23747720

RESUMO

Translation is mediated partly by regulation of free eukaryotic initiation factor 4E (eIF4E) levels through PI3K-Akt-mTOR signaling. Cancer cells treated with the plant-derived perillyl alcohol (POH) or the mechanistic target of rapamycin (mTOR) inhibitor rapamycin dephosphorylate eIF4E-binding protein (4E-BP1) and attenuate cap-dependent translation. We previously showed in cancer cell lines with elevated eIF4E that POH and rapamycin regulate telomerase activity through this pathway. Here, immortalized Chinese hamster ovary (CHO) control cells and CHO cells with forced eIF4E expression (rb4E) were used to elucidate eIF4E's role in telomerase regulation by POH and rapamycin. Despite 5-fold higher eIF4E amounts in rb4E, telomerase activity, telomerase reverse transcriptase (TERT) mRNA, and TERT protein were nearly equivalent in control and rb4E cells. In control cells, telomerase activity, TERT mRNA and protein levels were unaffected by either compound. In contrast, telomerase activity and TERT protein were both attenuated by either agent in rb4E cells, but without corresponding TERT mRNA decreases indicating a translational/post-translational process. S6K, Akt, and 4E-BP1 were modulated by mTOR mediators only in the presence of increased eIF4E. Thus, eIF4E-overexpression in rb4E cells enables inhibitory effects of POH and rapamycin on telomerase and TERT protein. Importantly, eIF4E-overexpression modifies cellular protein synthetic processes and gene regulation.


Assuntos
Antineoplásicos/farmacologia , Fator de Iniciação 4E em Eucariotos/genética , Monoterpenos/farmacologia , Sirolimo/farmacologia , Telomerase/antagonistas & inibidores , Animais , Células CHO , Cricetinae , Cricetulus , Ativação Enzimática/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Telomerase/genética , Telomerase/metabolismo , Transfecção , Regulação para Cima/genética , Regulação para Cima/fisiologia
4.
Mol Cell Biochem ; 375(1-2): 97-104, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23283642

RESUMO

We previously demonstrated in prostate cancer cells that a phytochemical-perillyl alcohol-and the mechanistic target of rapamycin (mTOR) inhibitor rapamycin rapidly attenuated telomerase activity. Protein levels of the telomerase catalytic subunit reverse transcriptase (hTERT) were diminished in the absence of an effect on hTERT mRNA, supporting an effect on 4E-BP1 phosphorylation and reduced initiation of protein translation. The decline in hTERT protein did not coincide wholly, however, with loss of telomerase activity suggesting a further level of regulation. We hypothesized that a hTERT-mTOR-S6K (S6 kinase)-Hsp90 (Heat shock protein 90)-Akt complex previously detected in activated NK cells was present in DU145 prostate cancer cells. Furthermore, we postulated that both perillyl alcohol and rapamycin disrupted this complex to control telomerase activity post-translationally. Antibodies directed against either RAPTOR, a binding partner of mTOR, or mTOR itself co-immunoprecipitated Hsp90, hTERT, and S6K confirming a similar TERT complex in prostate cancer cells. Perillyl alcohol or rapamycin caused rapid dissociation of the captured hTERT-mTOR-RAPTOR complex, establishing an additional mechanism by which these agents decrease telomerase activity. These findings provide convincing evidence for mTOR-mediated regulation of hTERT in DU145 cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antibióticos Antineoplásicos/farmacologia , Monoterpenos/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Telomerase/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imunoprecipitação , Complexos Multiproteicos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteína Regulatória Associada a mTOR , Proteínas Quinases S6 Ribossômicas/metabolismo
5.
Biochimie ; 94(12): 2639-48, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22902867

RESUMO

Isoprenoids are recognized for their ability to suppress carcinogenic processes in vivo and in vitro. We previously established that the isoprenoid, perillyl alcohol, acted mechanistically on translation of specific proteins through modulation of mechanistic target of rapamycin (mTOR) signaling. Telomerase-the enzyme responsible for immortalizing cells through the addition of telomeric repeats-is de-repressed early in an aspiring cancer cell. Here the effects of biologically-relevant concentrations and short incubations (1-16 h) of perillyl alcohol or the mTOR inhibitor, rapamycin, on telomerase activity were examined in prostate cancer cell lines. A rapid suppression of telomerase activity was observed (from ∼65% to >95%) determined by real-time quantitative telomerase repeat amplification protocol and confirmed by polyacrylamide gel-analysis. Using real-time reverse transcriptase-PCR, we demonstrated that human telomerase reverse transcriptase (hTERT) mRNA levels were unaltered. Western blot analysis revealed that hTERT protein levels decreased in response to perillyl alcohol or rapamycin. This decrease was partially blocked by pretreatment with a proteasome inhibitor MG-132, indicating that proteasomal degradation contributed to the loss of hTERT protein. No change in hTERT phosphorylation at Ser824 was observed, indicating the absence of cellular hTERT protein redistribution. These findings provide evidence for a unique link between nutrient- and macrolide-mediated regulation of mTOR and hTERT, a key enzyme that regulates DNA structure and stability.


Assuntos
Inibidores Enzimáticos/farmacologia , Monoterpenos/farmacologia , Telomerase/antagonistas & inibidores , Western Blotting , Linhagem Celular Tumoral , Inibidores de Cisteína Proteinase/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leupeptinas/farmacologia , Masculino , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Telomerase/genética , Telomerase/metabolismo
6.
Expert Rev Mol Med ; 14: e8, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22455872

RESUMO

Telomeres are stretches of repeated DNA sequences located at the ends of chromosomes that are necessary to prevent loss of gene-coding DNA regions during replication. Telomerase - the enzyme responsible for immortalising cancer cells through the addition of telomeric repeats - is active in ~90% of human cancers. Telomerase activity is inhibited by various phytochemicals such as isoprenoids, genistein, curcumin, epigallocatechin-3-gallate, resveratrol and others. Human TERT (telomerase reverse transcriptase - the rate-limiting component of telomerase), heat shock protein 90, Akt, p70 S6 kinase (S6K) and mammalian target of rapamycin (mTOR) form a physical and functional complex with one another. The inclusion of Akt, mTOR and S6K in the TERT complex is compelling evidence to support mTOR-mediated control of telomerase activity. This review will define the role of mTOR, the master regulator of protein translation, in telomerase regulation and provide additional insights into the numerous ways in which telomerase activity is hindered by phytochemicals.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Telomerase/metabolismo , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Telomerase/antagonistas & inibidores
7.
Exp Mol Pathol ; 91(2): 528-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21640722

RESUMO

Deficiencies of DNA polymerase eta-an enzyme mediating replication past UV-induced DNA damage-predispose individuals to xeroderma pigmentosum variant (XPV) and result in a high incidence of skin cancers. We designed, developed and assessed several complementary molecular approaches to detect a genetically inherited deletion within DNA polymerase eta. RNA was reverse transcribed from XPV fibroblasts and from normal human cells, and standard polymerase chain reaction (PCR) was conducted on the cDNA targeting a region with a 13 base pair deletion within the polymerase eta gene. PCR products were subjected to restriction fragment length polymorphism (RFLP) analysis and cycle DNA sequencing. The deletion was found to eliminate a BsrGI restriction site and affected the number of resultant fragments visualized after gel electrophoresis. Cycle sequencing of polymerase eta-specific amplicons from XPV and normal cells provided a second approach for detecting the mutation. Additionally, the use of a fluorescent nucleic acid dye-EvaGreen-in real-time PCR and melt curve analysis distinguished normal and XPV patient-derived amplicons as well as heteroduplexes that represent heterozygotic carriers without the need for high resolution melt analysis-compatible software. Our approaches are easily adaptable by diagnostic laboratories that screen for or verify genetically inherited disorders and identify carriers of a defective gene.


Assuntos
Pareamento de Bases/genética , DNA Polimerase Dirigida por DNA/genética , Polimorfismo Genético , Deleção de Sequência/genética , Xeroderma Pigmentoso/enzimologia , Xeroderma Pigmentoso/genética , Sequência de Bases , Análise Mutacional de DNA , DNA Complementar/genética , Humanos , Masculino , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico/genética , Polimorfismo de Fragmento de Restrição , Próstata/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...