Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Med (Lausanne) ; 10: 1269689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904839

RESUMO

Background: Clinical attempts to find benefit from specifically targeting and boosting resistant hypoxic tumor subvolumes have been promising but inconclusive. While a first preclinical murine tumor type showed significant improved control with hypoxic tumor boosts, a more thorough investigation of efficacy from boosting hypoxic subvolumes defined by electron paramagnetic resonance oxygen imaging (EPROI) is necessary. The present study confirms improved hypoxic tumor control results in three different tumor types using a clonogenic assay and explores potential confounding experimental conditions. Materials and methods: Three murine tumor models were used for multi-modal imaging and radiotherapy: MCa-4 mammary adenocarcinomas, SCC7 squamous cell carcinomas, and FSa fibrosarcomas. Registered T2-weighted MRI tumor boundaries, hypoxia defined by EPROI as pO2 ≤ 10 mmHg, and X-RAD 225Cx CT boost boundaries were obtained for all animals. 13 Gy boosts were directed to hypoxic or equal-integral-volume oxygenated tumor regions and monitored for regrowth. Kaplan-Meier survival analysis was used to assess local tumor control probability (LTCP). The Cox proportional hazards model was used to assess the hazard ratio of tumor progression of Hypoxic Boost vs. Oxygenated Boost for each tumor type controlling for experimental confounding variables such as EPROI radiofrequency, tumor volume, hypoxic fraction, and delay between imaging and radiation treatment. Results: An overall significant increase in LTCP from Hypoxia Boost vs. Oxygenated Boost treatments was observed in the full group of three tumor types (p < 0.0001). The effects of tumor volume and hypoxic fraction on LTCP were dependent on tumor type. The delay between imaging and boost treatments did not have a significant effect on LTCP for all tumor types. Conclusion: This study confirms that EPROI locates resistant tumor hypoxic regions for radiation boost, increasing clonogenic LTCP, with potential enhanced therapeutic index in three tumor types. Preclinical absolute EPROI may provide correction for clinical hypoxia images using additional clinical physiologic MRI.

3.
Mol Imaging Biol ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715089

RESUMO

PURPOSE: Spatial heterogeneity in tumor hypoxia is one of the most important factors regulating tumor growth, development, aggressiveness, metastasis, and affecting treatment outcome. Most solid tumors are known to have hypoxia or low oxygen levels (pO2 ≤10 torr). Electron paramagnetic resonance oxygen imaging (EPROI) is an emerging oxygen mapping technology. EPROI utilizes the linear relationship between the relaxation rates of the injectable OX071 trityl spin probe and the partial oxygen pressure (pO2). However, most of the EPROI studies have been limited to mouse models of solid tumors because of the instrument-size limitations. The purpose of this work was to develop a human-sized 9-mT (250 MHz resonance frequency, 60 cm bore size) pulse EPROI instrument and evaluate its performance with rabbit VX-2 tumor oxygen imaging. METHODS: A New Zealand white rabbit with a 3.2-cm VX-2 tumor in the calf muscle was imaged using the human-sized EPROI instrument and a 2.25-in. ID volume coil. The animal received a ~8-min intravenous injection of OX071 (5.2 mL total volume at 72 mM concentration) and, after 75 min, an intratumoral injection (120 µL total at 5 mM OX071 concentration) and underwent EPROI. At the end of the experiments, MRI was performed using a preclinical 9.4-T MRI system to outline the tumor boundaries. RESULTS: For the first time, a human-sized pulse EPROI instrument with a 60-cm bore size/250-MHz frequency was built and evaluated using rabbit tumor oxygen imaging. For the first time, the systemic IV injection of the oxygen-sensitive trityl OX071 spin probe was used for an animal of this size. The resulting EPROI image from the IV injection showed complete tumor coverage. The image obtained after intratumoral injection showed localized coverage in the upper lobe of the tumor, demonstrating the need for improved intratumoral injection protocol. CONCLUSIONS: This study demonstrates the performance of the world's first human-sized pulse EPROI instrument. It also demonstrates that the EPROI of larger animals can be performed using the systemic injection of a manageable amount of the spin probe. This brings EPROI one step closer to clinical applications in cancer therapies. Oxygen imaging is a platform technology, and the instrument and techniques developed here will also be useful for other clinical applications.

4.
Int J Radiat Oncol Biol Phys ; 103(4): 977-984, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30414912

RESUMO

PURPOSE: It has been known for over 100 years that tumor hypoxia, a near-universal characteristic of solid tumors, decreases the curative effectiveness of radiation therapy. However, to date, there are no reports that demonstrate an improvement in radiation effectiveness in a mammalian tumor on the basis of tumor hypoxia localization and local hypoxia treatment. METHODS AND MATERIALS: For radiation targeting of hypoxic subregions in mouse fibrosarcoma, we used oxygen images obtained using pulse electron paramagnetic resonance pO2 imaging combined with 3D-printed radiation blocks. This achieved conformal radiation delivery to all hypoxic areas in FSa fibrosarcomas in mice. RESULTS: We demonstrate that treatment delivering a radiation boost to hypoxic volumes has a significant (P = .04) doubling of tumor control relative to boosts to well-oxygenated volumes. Additional dose to well-oxygenated tumor regions minimally increases tumor control beyond the 15% control dose to the entire tumor. If we can identify portions of the tumor that are more resistant to radiation, it might be possible to reduce the dose to more sensitive tumor volumes without significant compromise in tumor control. CONCLUSIONS: This work demonstrates in a single, intact mammalian tumor type that tumor hypoxia is a local tumor phenomenon whose treatment can be enhanced by local radiation. Despite enormous clinical effort to overcome hypoxic radiation resistance, to our knowledge this is the first such demonstration, even in preclinical models, of targeting additional radiation to hypoxic tumor to improve the therapeutic ratio.


Assuntos
Oxigênio/metabolismo , Radioterapia Guiada por Imagem/métodos , Animais , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica , Estimativa de Kaplan-Meier , Camundongos , Hipóxia Tumoral/efeitos da radiação
5.
Appl Magn Reson ; 48(8): 805-811, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29151678

RESUMO

A magnetometer designed for permanent magnet manufacturing and operated around 25 mT with 10ppm absolute accuracy is described. The magnetometer uses pulse electron paramagnetic resonance (EPR) methodology. The use of a pulsed broadband acquisition allowed reliable measurements in the presence of the magnetic field gradient and in relatively inhomogeneous magnetic fields of un-shimmed magnets.

6.
J Magn Reson ; 276: 31-36, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092786

RESUMO

Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with l-buthionine sulfoximine (BSO) markedly altered the kinetic images.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fibrossarcoma/diagnóstico por imagem , Neoplasias Experimentais/diagnóstico por imagem , Animais , Butionina Sulfoximina/química , Dissulfetos/química , Feminino , Glutationa/metabolismo , Imageamento Tridimensional , Cinética , Camundongos , Camundongos Endogâmicos C3H , Neoplasias Experimentais/metabolismo , Óxidos de Nitrogênio/química , Oxirredução , Razão Sinal-Ruído , Marcadores de Spin/síntese química
7.
Artigo em Inglês | MEDLINE | ID: mdl-29576754

RESUMO

A simple scheme for dynamically switching the quality factor, Q, of a Loop-Gap Resonator (LGR); working at 250 MHz is presented. The addition of this Q-modulator resulted in 30% improvement in Electron Paramagnetic Resonance imager signal-to-noise ratio. During pulse excitation, this scheme lowered the Q, while higher Q was obtained during signal detection. These conditions favored the image acquisition. The Q-modulator is passive; the transition between different states was actuated by the radio frequency power itself.

8.
Appl Magn Reson ; 48(11-12): 1227-1247, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29391664

RESUMO

Resonators for preclinical electron paramagnetic resonance imaging have been designed primarily for rodents and rabbits and have internal diameters between 16 and 51 mm. Lumped circuit resonators include loop-gap, Alderman-Grant, and saddle coil topologies and surface coils. Bimodal resonators are useful for isolating the detected signal from incident power and reducing dead time in pulse experiments. Resonators for continuous wave, rapid scan, and pulse experiments are described. Experience at the University of Chicago and University of Denver in design of resonators for in vivo imaging is summarized.

9.
J Magn Reson ; 240: 45-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24530507

RESUMO

A 250 MHz bimodal resonator with a 19 mm internal diameter for in vivo pulse electron paramagnetic resonance (EPR) imaging is presented. Two separate coaxial cylindrical resonators inserted one into another were used for excitation and detection. The Alderman-Grant excitation resonator (AGR) showed the highest efficiency among all the excitation resonators tested. The magnetic field of AGR is confined to the volume of the detection resonator, which results in highly efficient use of the radio frequency power. A slotted inner single loop single gap resonator (SLSG LGR), coaxial to the AGR, was used for signal detection. The resulting bimodal resonator (AG/LGR) has two mutually orthogonal magnetic field modes; one of them has the magnetic field in the axial direction. The resonator built in our laboratory achieved 40 dB isolation over 20 MHz bandwidth with quality factors of detection and excitation resonators of 36 and 11 respectively. Considerable improvement of the B1 homogeneity and EPR image quality in comparison with reflection loop-gap resonator of similar size and volume was observed.


Assuntos
Diagnóstico por Imagem/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Animais , Campos Eletromagnéticos , Eletrônica , Feminino , Membro Posterior/anatomia & histologia , Membro Posterior/patologia , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C3H , Neoplasias Experimentais/patologia , Imagens de Fantasmas
10.
Med Phys ; 38(6): 3062-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21815379

RESUMO

PURPOSE: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors' aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique. METHODS: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom. RESULTS: For the phantom used in this study, transverse relaxation (T(2e)) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T(2e) images. CONCLUSIONS: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Imagem Molecular/métodos , Oxigênio/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Processamento de Imagem Assistida por Computador , Imagem Molecular/instrumentação , Imagens de Fantasmas
11.
Med Phys ; 38(4): 2045-52, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21626937

RESUMO

PURPOSE: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. METHODS: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. RESULTS: A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above 100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. CONCLUSIONS: ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Imagem Molecular/métodos , Oxigênio/metabolismo , Animais , Feminino , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Camundongos
12.
Concepts Magn Reson Part B Magn Reson Eng ; 33B(3): 163-176, 2008 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19924261

RESUMO

A versatile 250 MHz pulse electron paramagnetic resonance (EPR) instrument for imaging of small animals is presented. Flexible design of the imager hardware and software makes it possible to use virtually any pulse EPR imaging modality. A fast pulse generation and data acquisition system based on general purpose PCI boards performs measurements with minimal additional delays. Careful design of receiver protection circuitry allowed us to achieve very high sensitivity of the instrument. In this article we demonstrate the ability of the instrument to obtain three dimensional images using the electron spin echo (ESE) and single point imaging (SPI) methods. In a phantom that contains a 1 mM solution of narrow line (16 µT, peak-to-peak) paramagnetic spin probe we achieved an acquisition time of 32 seconds per image with a fast 3D ESE imaging protocol. Using an 18 minute 3D phase relaxation (T(2e)) ESE imaging protocol in a homogeneous sample a spatial resolution of 1.4 mm and a standard deviation of T(2e) of 8.5% were achieved. When applied to in vivo imaging this precision of T(2e) determination would be equivalent to 2 torr resolution of oxygen partial pressure in animal tissues.

13.
Magn Reson Med ; 55(4): 904-12, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16526015

RESUMO

The use of spin echoes to obtain spectroscopic EPR images (spectral-spatial images) at 250 MHz is described. The advantages of spin echoes-larger signals than the free induction decay, better phase characteristics for Fourier transformation, and decay shapes undistorted by instrumental dead time-are clearly shown. An advantage is gained from using a crossed loop resonator that isolates the 250-W pump power by greater than 50 dB from the observer arm preamplifiers. The echo decay rates can be used to determine the oxygen content in solutions containing 1 mM trityl concentrations. Two- and three-dimensional images of oxygen concentration are presented.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Compostos de Tritil/química , Análise de Fourier , Oxigênio/química , Processamento de Sinais Assistido por Computador , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...