Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 13(2): 209-219, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37124115

RESUMO

Heating nanoparticles with a magnetic field could facilitate selective remote control of neural activity in deep tissue. However, current magnetothermal stimulation approaches are limited to single-channel stimulation. Here, we investigated various designs for multichannel magnetothermal stimulation based on an array of resonant coils that are driven by a single loop coil. Using a tuning capacitor that allows resonant coils to resonate at the operating frequency, each coil's ON and OFF resonance can be controlled, enabling us to select stimulation channels. We found that smaller inner diameters of resonant coils produce more localized magnetic fields while larger coils produce magnetic fields over a longer distance. The constructed multichannel resonant coil arrays can provide a high enough magnetic field intensity to raise the temperature of nanoparticles by 8 °C when we apply 35.2 W into the loop coil that is spaced 1 mm from the target neurons. This multichannel stimulation using a simple resonant circuit approach would be useful for clinical applications of magnetothermal neural stimulation.

2.
J Colloid Interface Sci ; 564: 113-123, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31911217

RESUMO

HYPOTHESIS: Nacre-like polymer/clay nanocomposites are a fascinating material thanks to its superior mechanical property. However, it has been a great challenge to incorporate hydrophobic polymer components due to highly hydrophilic nature of clay, which limits further improvement of water-resistance and addition of various functionalities. To overcome this problem, we developed a method to form regular nacre-like layered structure from a hydrophobic polymer and hydrophilic clay by a combination of surface modification of clay and selective click reaction between the polymer and clay surfaces. EXPERIMENTS: Natural clay, montmorillonite, was modified with a hydrophobic surfactant bearing an ethenyl group and subsequently reacted in situ with a thiol-functionalized hydrophobic polysiloxane. The layered structure, as well as its formation process, mechanical property, physical stability in water, and self-adhesion property of the nanocomposites were investigated. FINDINGS: In situ thiol-ene click reaction between surface-modified clay and polymer led to self-alignment of clay platelets into a regular layered structure. The resultant nacre-like nanocomposites not only showed the good mechanical property but also had excellent stability in water and self-adhesion ability, both of which originated from the characteristics of the polymer used. These findings widen the possibility of functional nacre-like nanocomposites by expanding the range of applicable polymers to hydrophobic ones.

3.
Biomacromolecules ; 18(9): 2959-2966, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28853566

RESUMO

Man-made glues often fail to stick in wet environments because of hydration-induced softening and dissolution. The wound healing process of a tunicate inspired the synthesis of gallol-functionalized copolymers as underwater adhesive. Copolymers bearing three types of phenolic groups, namely, phenol, catechol, and gallol, were synthesized via the methoxymethyl protection/deprotection route. Surprisingly, the newly synthesized copolymers bearing gallol groups exhibited stronger adhesive performances (typically 7× stronger in water) than the widely used catechol-functionalized copolymers under all tested conditions (in air, water, seawater, or phosphate-buffered saline solution). The higher binding strength was ascribed to the tridentate-related interfacial interaction and chemical cross-linking. Moreover, gallol-functionalized copolymers adhered to all tested surfaces including plastic, glass, metal, and biological material. In seawater, the performance of gallol-functionalized copolymer even exceeds the commercially available isocyanate-based glue. The insights from this study are expected to help in the design of biomimetic materials containing gallol groups that may be utilized as potential bioadhesives and for other applications. The results from such a kind of comparable study among phenol, catechol, and gallol suggests that tridentate structure should be better than bidentate structure for bonding to the surface.


Assuntos
Adesivos/síntese química , Organismos Aquáticos/química , Catecóis/química , Ácido Gálico/análogos & derivados , Urocordados/química , Adesividade , Adesivos/química , Animais , Organismos Aquáticos/metabolismo , Reagentes de Ligações Cruzadas/química , Vidro/química , Metais/química , Plásticos/química , Relação Estrutura-Atividade , Urocordados/metabolismo
4.
ACS Omega ; 2(11): 8475-8482, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457384

RESUMO

Fabrication and characterization of water-resistant nacre-like polymer/clay nanocomposites, in which clay platelets and hydrophobic polymer chains are alternately stacked in parallel, are reported. Hydrophilic clay was converted by an ion-exchange reaction with a methacrylate monomer having a long alkyl chain and a quaternary ammonium salt group at the end. The subsequent in situ polymerization bound the neighboring clay surfaces, leading to the preferential orientation of the clay platelets owing to their high aspect ratio. The composites maintained excellent mechanical properties even after being immersed in water for more than a day. Strong shape stability was observed in water as well as in various organic solvents.

5.
Appl Microbiol Biotechnol ; 90(3): 997-1004, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21246355

RESUMO

Recombinant yeast strains highly tolerant to formic acid during xylose fermentation were constructed. Microarray analysis of xylose-fermenting Saccharomyces cerevisiae strain overexpressing endogenous xylulokinase in addition to xylose reductase and xylitol dehydrogenase from Pichia stipitis revealed that upregulation of formate dehydrogenase genes (FDH1 and FDH2) was one of the most prominent transcriptional events against excess formic acid. The quantification of formic acid in medium indicated that the innate activity of FDH was too weak to detoxify formic acid. To reinforce the capability for formic acid breakdown, the FDH1 gene was additionally overexpressed in the xylose-metabolizing recombinant yeast. This modification allowed the yeast to rapidly decompose excess formic acid. The yield and final ethanol concentration in the presence of 20 mM formic acid is as essentially same as that of control. The fermentation profile also indicated that the production of xylitol and glycerol, major by-products in xylose fermentation, was not affected by the upregulation of FDH activity.


Assuntos
Etanol/metabolismo , Fermentação , Formiatos/metabolismo , Engenharia Genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pichia/enzimologia , Pichia/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...