Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Pharm ; 661: 124386, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942182

RESUMO

Postoperative tissue adhesion is a well-recognized and common complication. Despite ongoing developments in anti-adhesion agents, complete prevention remains a challenge in clinical practice. Colorectal cancer necessitates both adhesion prevention and postoperative chemotherapy. Accordingly, drug-loading into an anti-adhesion agent could be employed as a treatment strategy to maximize the drug effects through local application and minimize side effects. Herein, we introduce an anti-adhesion agent that functions as a drug delivery system by loading drugs within an emulsion that forms a gel matrix in the presence of polysaccharides, xanthan gum, and pectin. Based on the rheological analysis, the xanthan gum-containing emulsion gel formed a gel matrix with suitable strength and mucosal adhesiveness. In vitro dissolution tests demonstrated sustained drug release over 12 h, while in vivo pharmacokinetic studies revealed a significant increase in the Tmax (up to 4.03 times) and area under the curve (up to 2.62 times). However, most of the drug was released within one day, distributing systemically and raising toxicity concerns, thus limiting its efficacy as a controlled drug delivery system. According to in vivo anti-adhesion efficacy evaluations, the xanthan gum/pectin emulsion gels, particularly F2 and F3, exhibited remarkable anti-adhesion capacity (P < 0.01). The emulsion gel formulation exhibited no cytotoxicity against fibroblasts or epithelial cell lines. Thus, the xanthan gum/pectin emulsion gel exhibits excellent anti-adhesion properties and could be developed as a drug delivery system.

2.
Exp Mol Med ; 55(6): 1076-1089, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37258576

RESUMO

The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.


Assuntos
Doenças Metabólicas , Transdução de Sinais , Humanos , Homeostase/fisiologia , Aminoácidos/metabolismo , Nutrientes , Doenças Metabólicas/metabolismo
3.
Cancer Res ; 83(5): 735-752, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36594876

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) exhibits severe hypoxia, which is associated with chemoresistance and worse patient outcome. It has been reported that hypoxia induces metabolic reprogramming in cancer cells. However, it is not well known whether metabolic reprogramming contributes to hypoxia. Here, we established that increased glutamine catabolism is a fundamental mechanism inducing hypoxia, and thus chemoresistance, in PDAC cells. An extracellular matrix component-based in vitro three-dimensional cell printing model with patient-derived PDAC cells that recapitulate the hypoxic status in PDAC tumors showed that chemoresistant PDAC cells exhibit markedly enhanced glutamine catabolism compared with chemoresponsive PDAC cells. The augmented glutamine metabolic flux increased the oxygen consumption rate via mitochondrial oxidative phosphorylation (OXPHOS), promoting hypoxia and hypoxia-induced chemoresistance. Targeting glutaminolysis relieved hypoxia and improved chemotherapy efficacy in vitro and in vivo. This work suggests that targeting the glutaminolysis-OXPHOS-hypoxia axis is a novel therapeutic target for treating patients with chemoresistant PDAC. SIGNIFICANCE: Increased glutaminolysis induces hypoxia via oxidative phosphorylation-mediated oxygen consumption and drives chemoresistance in pancreatic cancer, revealing a potential therapeutic strategy of combining glutaminolysis inhibition and chemotherapy to overcome resistance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Glutamina , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pancreáticas
5.
Nat Commun ; 13(1): 2904, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614056

RESUMO

All living organisms have the ability to sense nutrient levels to coordinate cellular metabolism. Despite the importance of nutrient-sensing pathways that detect the levels of amino acids and glucose, how the availability of these two types of nutrients is integrated is unclear. Here, we show that glucose availability regulates the central nutrient effector mTORC1 through intracellular leucine sensor leucyl-tRNA synthetase 1 (LARS1). Glucose starvation results in O-GlcNAcylation of LARS1 on residue S1042. This modification inhibits the interaction of LARS1 with RagD GTPase and reduces the affinity of LARS1 for leucine by promoting phosphorylation of its leucine-binding site by the autophagy-activating kinase ULK1, decreasing mTORC1 activity. The lack of LARS1 O-GlcNAcylation constitutively activates mTORC1, supporting its ability to sense leucine, and deregulates protein synthesis and leucine catabolism under glucose starvation. This work demonstrates that LARS1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine.


Assuntos
Acetilglucosamina , Glucose , Leucina-tRNA Ligase , Leucina , Alvo Mecanístico do Complexo 1 de Rapamicina , Acetilglucosamina/metabolismo , Autofagia , Glucose/metabolismo , Humanos , Leucina/metabolismo , Leucina-tRNA Ligase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
6.
Exp Mol Med ; 54(5): 553-566, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35501376

RESUMO

Although key tumorigenic and tumor-suppressive factors have been unveiled over the last several decades, cancer remains the most life-threatening disease. Multiomic analyses of patient samples and an in-depth understanding of tumorigenic processes have rapidly revealed unexpected pathologic associations of new cellular factors previously overlooked in cancer biology. In this regard, the newly discovered activities of human aminoacyl-tRNA synthases (ARSs) deserve attention not only for their pathological significance in tumorigenesis but also regarding diagnostic and therapeutic implications. ARSs are not only essential enzymes covalently linking substrate amino acids to cognate tRNAs for protein synthesis but also function as regulators of cellular processes by sensing different cellular conditions. With their catalytic role in protein synthesis and their regulatory role in homeostasis, functional alterations or dysregulation of ARSs might be pathologically associated with tumorigenesis. This review focuses on the potential implications of ARS genes and proteins in different aspects of cancer based on various bioinformatic analyses and experimental data. We also review their diverse activities involving extracellular secretion, protein-protein interactions, and amino acid sensing, which are related to cancers. The newly discovered cancer-related activities of ARSs are expected to provide new opportunities for detecting, preventing and curing cancers.


Assuntos
Aminoacil-tRNA Sintetases , Neoplasias , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Carcinogênese , Humanos , Neoplasias/patologia , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo
7.
Exp Mol Med ; 52(9): 1496-1516, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32943735

RESUMO

As knowledge of cell metabolism has advanced, glutamine has been considered an important amino acid that supplies carbon and nitrogen to fuel biosynthesis. A recent study provided a new perspective on mitochondrial glutamine metabolism, offering mechanistic insights into metabolic adaptation during tumor hypoxia, the emergence of drug resistance, and glutaminolysis-induced metabolic reprogramming and presenting metabolic strategies to target glutamine metabolism in cancer cells. In this review, we introduce the various biosynthetic and bioenergetic roles of glutamine based on the compartmentalization of glutamine metabolism to explain why cells exhibit metabolic reliance on glutamine. Additionally, we examined whether glutamine derivatives contribute to epigenetic regulation associated with tumorigenesis. In addition, in discussing glutamine transporters, we propose a metabolic target for therapeutic intervention in cancer.


Assuntos
Metabolismo Energético , Glutamina/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Suscetibilidade a Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...