Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 27(20): 12361-7, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21916431

RESUMO

We report a temperature-induced gelation in dilute nanofluids containing surfactant capped iron oxide and alumina particles of average diameter ~10 nm. We observe a dramatic enhancement in the elastic modulus, viscous modulus, and viscosity, by 3-6 orders of magnitude for a volume fraction (φ) less than 0.035, above a critical shear rate ( ̇γ(c)) and temperature (T(c)). The T(c) follows a weak power law scaling with φ as T(c) ~ φ(ß), where the scaling exponent ß is found to be -0.24. The observed gel-like transition at elevated temperature is attributed to strong van der Waals attractions on the kT energy scale due to poor solvent conditions, which is reminiscent of the phase behavior reported in polymer-coated colloids.


Assuntos
Géis , Nanopartículas/química , Tensoativos/química , Temperatura , Coloides/química , Compostos Férricos/química , Polímeros/química , Viscosidade
2.
Nanoscale Res Lett ; 5(10): 1706-11, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21076702

RESUMO

Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.

3.
Nanotechnology ; 17(18): 4765-72, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21727610

RESUMO

Nanoparticles are of immense importance both from the fundamental and application points of view. They exhibit quantum size effects which are manifested in their improved magnetic and electric properties. Mechanical attrition by high energy ball milling (HEBM) is a top down process for producing fine particles. However, fineness is associated with high surface area and hence is prone to oxidation which has a detrimental effect on the useful properties of these materials. Passivation of nanoparticles is known to inhibit surface oxidation. At the same time, coating polymer film on inorganic materials modifies the surface properties drastically. In this work a modified set-up consisting of an RF plasma polymerization technique is employed to coat a thin layer of a polymer film on Fe nanoparticles produced by HEBM. Ball-milled particles having different particle size ranges are coated with polyaniline. Their electrical properties are investigated by measuring the dc conductivity in the temperature range 10-300 K. The low temperature dc conductivity (I-V) exhibited nonlinearity. This nonlinearity observed is explained on the basis of the critical path model. There is clear-cut evidence for the occurrence of intergranular tunnelling. The results are presented here in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA