Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 151: 423-438, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639728

RESUMO

Predicting bacterial levels in watersheds in response to agricultural beneficial management practices (BMPs) requires understanding the germane processes at both the watershed and field scale. Controlling subsurface tile drainage (CTD) is a highly effective BMP at reducing nutrient losses from fields, and watersheds when employed en masse, but little work has been conducted on CTD effects on bacterial loads and densities in a watershed context. This study compared fecal indicator bacteria (FIB) [E. coli, Enterococcus, Fecal coliform, Total coliform, Clostridium perfringens] densities and unit area loads (UAL) from a pair of flat tile-drained watersheds (∼250-467 ha catchment areas) during the growing season over a 10-year monitoring period, using a before-after-control-impact (BACI) design (i.e., test CTD watershed vs. reference uncontrolled tile drainage (UCTD) watershed during a pre CTD intervention period and a CTD-intervention period where the test CTD watershed had CTD deployed on over 80% of the fields). With no tile drainage management, upstream tile drainage to ditches comprised ∼90% of total ditch discharge. We also examined FIB loads from a subset of tile drained fields to determine field load contributions to the watershed drainage ditches. Statistical evidence of a CTD effect on FIB UAL in the surface water systems was not strong; however, there was statistical evidence of increased FIB densities [pronounced when E. coli >200 most probable number (MPN) 100 mL-1] in the test CTD watershed during the CTD-intervention period. This was likely a result of reduced dilution/flushing in the test CTD watershed ditch due to CTD significantly decreasing the amount of tile drainage water entering the surface water system. Tile E. coli load contributions to the ditches were low; for example, during the 6-yr CTD-intervention period they amounted to on average only ∼3 and ∼9% of the ditch loads for the test CTD and reference UCTD watersheds, respectively. This suggests in-stream, or off-field FIB reservoirs and bacteria mobilization drivers, dominated ditch E. coli loads in the watersheds during the growing season. Overall, this study suggested that decision making regarding deployment of CTD en masse in tile-fed watersheds should consider drainage practice effects on bacterial densities and loads, as well as CTD's documented capacity to boost crop yields and reduce seasonal nutrient pollution.


Assuntos
Escherichia coli , Rios , Agricultura , Bactérias , Estações do Ano
2.
J Environ Qual ; 44(5): 1589-604, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436276

RESUMO

Controlled tile drainage (CTD) regulates water and nutrient export from tile drainage systems. Observations of the effects of CTD imposed en masse at watershed scales are needed to determine the effect on downstream receptors. A paired-watershed approach was used to evaluate the effect of field-to-field CTD at the watershed scale on fluxes and flow-weighted mean concentrations (FWMCs) of N and P during multiple growing seasons. One watershed (467-ha catchment area) was under CTD management (treatment [CTD] watershed); the other (250-ha catchment area) had freely draining or uncontrolled tile drainage (UCTD) (reference [UCTD] watershed). The paired agricultural watersheds are located in eastern Ontario, Canada. Analysis of covariance and paired tests were used to assess daily fluxes and FWMCs during a calibration period when CTD intervention on the treatment watershed was minimal (2005-2006, when only 4-10% of the tile-drained area was under CTD) and a treatment period when the treatment (CTD) watershed had prolific CTD intervention (2007-2011 when 82% of tile drained fields were controlled, occupying >70% of catchment area). Significant linear regression slope changes assessed using ANCOVA ( ≤ 0.1) for daily fluxes from upstream and downstream monitoring sites pooled by calibration and treatment period were -0.06 and -0.20 (stream water) (negative values represent flux declines in CTD watershed), -0.59 and -0.77 (NH-N), -0.14 and -0.15 (NO-N), -1.77 and -2.10 (dissolved reactive P), and -0.28 and 0.45 (total P). Total P results for one site comparison contrasted with other findings likely due to unknown in-stream processes affecting total P loading, not efficacy of CTD. The FWMC results were mixed and inconclusive but suggest physical abatement by CTD is the means by which nutrient fluxes are predominantly reduced at these scales. Overall, our study results indicate that CTD is an effective practice for reducing watershed scale fluxes of stream water, N, and P during the growing season.

3.
J Environ Qual ; 43(2): 617-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25602663

RESUMO

Excessive N loading from subsurface tile drainage has been linked to water quality degradation. Controlled tile drainage (CTD) has the potential to reduce N losses via tile drainage and boost crop yields. While CTD can reduce N loss from tile drainage, it may increase losses through other pathways. A multiple-year field-scale accounting of major N inputs and outputs during the cropping season was conducted on freely drained and controlled tile drained agricultural fields under corn ( L.)-soybean [ (L.) Merr.] production systems in eastern Ontario, Canada. Greater predicted gaseous N emissions for corn and soybean and greater observed lateral seepage N losses were observed for corn and soybean fields under CTD relative to free-draining fields. However, observed N losses from tile were significantly lower for CTD fields, in relation to freely drained fields. Changes in residual soil N were essentially equivalent between drainage treatments, while mass balance residual terms were systematically negative (slightly more so for CTD). Increases in plant N uptake associated with CTD were observed, probably resulting in higher grain yields for corn and soybean. This study illustrates the benefits of CTD in decreasing subsurface tile drainage N losses and boosting crop yields, while demonstrating the potential for CTD to increase N losses via other pathways related to gaseous emissions and groundwater seepage.

4.
J Environ Manage ; 129: 652-64, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23910796

RESUMO

Controlled tile drainage can boost crop yields and improve water quality, but it also has the potential to increase GHG emissions. This study compared in-situ chamber-based measures of soil CH4, N2O, and CO2 fluxes for silt loam soil under corn and soybean cropping with conventional tile drainage (UTD) and controlled tile drainage (CTD). A semi-empirical model (NEMIS-NOE) was also used to predict soil N2O fluxes from soils using observed soil data. Observed N2O and CH4 fluxes between UTD and CTD fields during the farming season were not significantly different at 0.05 level. Soils were primarily a sink for CH4 but in some cases a source (sources were associated exclusively with CTD). The average N2O fluxes measured ranged between 0.003 and 0.028 kg N ha(-1) day(-1). There were some significantly higher (p ≤ 0.05) CO2 fluxes associated with CTD relative to UTD during some years of study. Correlation analyses indicated that the shallower the water table, the greater the CO2 fluxes. Higher corn plant C for CTD tended to offset estimated higher CTD CO2 C losses via soil respiration by ∼100-300 kg C ha(-1). There were good fits between observed and predicted (NEMIS-NOE) N2O fluxes for corn (R(2) = 0.70) and soybean (R(2) = 0.53). Predicted N2O fluxes were higher for CTD for approximately 70% of the paired-field study periods suggesting that soil physical factors, such as water-filled pore space, imposed by CTD have potentially strong impacts on net N fluxes. Model predictions of daily cumulative N2O fluxes for the agronomically-active study period for corn-CTD and corn-UTD, as a percentage of total N fertilizer applied, were 3.1% and 2.6%, respectively. For predicted N2O fluxes on basis of yield units, indices were 0.0005 and 0.0004 (kg N kg(-1) crop grain yield) for CTD and UTD corn fields, respectively, and 0.0011 and 0.0005 for CTD and UTD soybean fields, respectively.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/metabolismo , Monitoramento Ambiental/métodos , Glycine max/metabolismo , Solo/química , Zea mays/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Modelos Teóricos , Óxido Nítrico/metabolismo , Ciclo do Nitrogênio , Estações do Ano
5.
Water Res ; 47(10): 3255-72, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23623467

RESUMO

Human campylobacteriosis is the leading bacterial gastrointestinal illness in Canada; environmental transmission has been implicated in addition to transmission via consumption of contaminated food. Information about Campylobacter spp. occurrence at the watershed scale will enhance our understanding of the associated public health risks and the efficacy of source water protection strategies. The overriding purpose of this study is to provide a quantitative framework to assess and compare the relative public health significance of watershed microbial water quality associated with agricultural BMPs. A microbial monitoring program was expanded from fecal indicator analyses and Campylobacter spp. presence/absence tests to the development of a novel, 11-tube most probable number (MPN) method that targeted Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. These three types of data were used to make inferences about theoretical risks in a watershed in which controlled tile drainage is widely practiced, an adjacent watershed with conventional (uncontrolled) tile drainage, and reference sites elsewhere in the same river basin. E. coli concentrations (MPN and plate count) in the controlled tile drainage watershed were statistically higher (2008-11), relative to the uncontrolled tile drainage watershed, but yearly variation was high as well. Escherichia coli loading for years 2008-11 combined were statistically higher in the controlled watershed, relative to the uncontrolled tile drainage watershed, but Campylobacter spp. loads for 2010-11 were generally higher for the uncontrolled tile drainage watershed (but not statistically significant). Using MPN data and a Bayesian modelling approach, higher mean Campylobacter spp. concentrations were found in the controlled tile drainage watershed relative to the uncontrolled tile drainage watershed (2010, 2011). A second-order quantitative microbial risk assessment (QMRA) was used, in a relative way, to identify differences in mean Campylobacter spp. infection risks among monitoring sites for a hypothetical exposure scenario. Greater relative mean risks were obtained for sites in the controlled tile drainage watershed than in the uncontrolled tile drainage watershed in each year of monitoring with pair-wise posterior probabilities exceeding 0.699, and the lowest relative mean risks were found at a downstream drinking water intake reference site. The second-order modelling approach was used to partition sources of uncertainty, which revealed that an adequate representation of the temporal variation in Campylobacter spp. concentrations for risk assessment was achieved with as few as 10 MPN data per site. This study demonstrates for the first time how QMRA can be implemented to evaluate, in a relative sense, the public health implications of controlled tile drainage on watershed-scale water quality.


Assuntos
Campylobacter , Escherichia coli , Modelos Teóricos , Medição de Risco/métodos , Rios/microbiologia , Microbiologia da Água , Agricultura , Teorema de Bayes , Campylobacter/patogenicidade , Infecções por Campylobacter/epidemiologia , Canadá , Monitoramento Ambiental/métodos , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia , Fezes/microbiologia , Humanos , Ontário , Saúde Pública , Qualidade da Água
6.
J Environ Qual ; 41(4): 1301-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751075

RESUMO

This 5-yr study compared, via an upstream-downstream experimental design, nutrient and microbial water quality of an intermittent stream running through a small pasture (∼2.5 animals ha) where cattle are restricted from the riparian zone (restricted cattle access [RCA]) and where cattle have unrestricted access to the stream (unrestricted cattle access [URCA]). Fencing in the RCA excluded pasturing cattle to within ∼3 to 5 m of the stream. Approximately 88% (26/32) of all comparisons of mean contaminant load reduction for lower, higher, and all stream flow conditions during the 5-yr study indicated net contaminant load reductions in the RCA; for the URCA, this percentage was 38% (12/32). For all flow conditions, mean percent load reductions in the RCA for nutrients and bacteria plus F-coliphage were 24 and 23%, respectively. These respective percentages for the URCA were -9 and -57% (positive values are reductions; negative values are increases). However, potentially as a result of protected wildlife habitat in the RCA, the mean percent load reduction for for "all flow" was -321% for the RCA and 60% for the URCA; for , these respective percentages were -209% (RCA) and 73% (URCA). For "all flow" situations, mean load reductions for the RCA were significantly greater ( < 0.1) than those from the URCA for NH-N, dissolved reactive phosphorus (DRP), total coliform, , and . For "high flow" situations, mean load reductions were significantly greater for the RCA for DRP, total coliform, and . For "low flow" conditions, significantly greater mean load reductions were in favor of the RCA for DRP, total P, total coliforms, fecal coliforms, , and . In no case were mean pollutant loads in the URCA significantly higher than RCA pollutant loads. Restricting pasturing livestock to within 3 to 5 m of intermittent streams can improve water quality; however, water quality impairment can occur if livestock have unrestricted access to a stream.


Assuntos
Bactérias/isolamento & purificação , Bovinos , Rios/química , Rios/microbiologia , Poluentes da Água , Água/química , Criação de Animais Domésticos , Animais , Colífagos/isolamento & purificação , Monitoramento Ambiental , Sedimentos Geológicos/microbiologia , Nitrogênio/química , Fósforo/química , Microbiologia do Solo , Microbiologia da Água , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...