Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34883573

RESUMO

Microplastic pollution is globally widespread; however, the presence of microplastics in soil systems is poorly understood, due to the complexity of soils and a lack of standardised extraction methods. Two commonly used extraction methods were optimised and compared for the extraction of low-density (polyethylene (PE)) and high-density microplastics (polyethylene (PET)), olive-oil-based extraction, and density separation with zinc chloride (ZnCl2). Comparable recoveries in a low-organic-matter matrix (soil; most >98%) were observed, but in a high-organic-matter matrix (compost), density separation yielded higher recoveries (98 ± 4% vs. 80 ± 11%). Density separation was further tested for the extraction of five microplastic polymers spiked at different concentrations. Recoveries were >93% for both soil and compost, with no differences between matrices and individual polymers. Reduction in levels of organic matter in compost was tested before and after extraction, as well as combined. Double oxidation (Fenton's reagent and 1 M NaOH) exhibited the highest reduction in organic matter. Extracted microplastic polymers were further identified via headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). This method has shown the potential for descriptive quantification of microplastic polymers. A linear relationship between the number of particles and the signal response was demonstrated for PET, polystyrene (PS), polyvinyl chloride (PVC), and PE (R2 > 0.98 in alluvial soil, and R2 > 0.80 in compost). The extraction and identification methods were demonstrated on an environmental sample of municipal biowaste compost, with the recovery of 36 ± 9 microplastic particles per 10 g of compost, and the detection of PS and PP.

2.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805927

RESUMO

Microplastics (MPs) have gained significant attention in the last two decades and have been widely researched in the marine environment. There are, however, less studies on their presence, routes of entry, and impacts on the biota in the soil environment. One of the main issues in the study of MPs is a lack of standardized methods for their identification in environmental samples. Currently the most commonly used techniques are thermal desorption gas chromatography-mass spectrometry (GC-MS) methods and pyrolysis followed by GC-MS. In this study, headspace-solid phase microextraction followed by GC-MS is proposed as a simple and widely applicable method for the determination of commonly present polymer MPs (polyethylene terephthalate, polystyrene, polyvinyl chloride, polyethylene, and polypropylene) in environmental samples, for analytical laboratories with basic equipment worldwide. The proposed method is based on the identification of compounds, which are formed during the well-controlled melting process of specific coarse (1-5 mm) and fine fraction (1 mm-100 µm) MPs. The method was upgraded for the identification of individual polymer type in blends and in complex environmental matrices (soil and algae biomass). The successful application of the method in complex matrices makes it especially suitable for widescale use.

3.
Chemosphere ; 261: 127762, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32738715

RESUMO

The presence of microplastics (MPs) and their effects have been widely investigated in the aquatic environment, whereas the research done in the terrestrial environment is incomparably lacking. MPs are considered a pollutant in soil on agricultural land, where they can act as a vector for other pollutants, namely organic chemical compounds, such as pesticides. In soil, presence of MPs is affecting the growth and life of microorganisms in it. The interactions between two types of MPs and three pesticides in the mixture with alluvial soil were studied. Adsorption of acetamiprid, chlorantraniliprole and flubendiamide in concentrations of 1, 5 and 10 mg L-1 onto polyester fibres and polypropylene particles of 0.5-1 mm size was studied at 1% and 5% (w/w) of their content in soil. Results showed that the adsorption of pesticides was dependent on their octanol/water partition coefficient, with the most highly adsorbed pesticide also being the most hydrophobic, regardless of the type and form of MPs. Adsorption of pesticides onto MP particles was confirmed in soil-MPs mixtures with 5% polypropylene and 5% polyester at all tested pesticides' concentrations, proving that MPs in soil systems act as carriers to pollutants. MPs in soil decreased the soil's intrinsic capacity to retain pesticides, indicating the possibility of a greater mobility of pesticides on MPs through the soil system.


Assuntos
Benzamidas/química , Microplásticos/química , Neonicotinoides/química , Poluentes do Solo/química , Sulfonas/química , ortoaminobenzoatos/química , Adsorção , Agricultura , Poluentes Ambientais , Praguicidas/química , Plásticos , Solo , Poluentes do Solo/análise
4.
Arh Hig Rada Toksikol ; 70(2): 140-148, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31246572

RESUMO

The aim of this study was to identify and quantify faecal indicator bacteria in blackwater collected from a source separation unit and determine the amount of E. coli isolates resistant to antimicrobials and their potential to produce extended spectrum ß-lactamases (ESßLs) and metallo-ß-lactamases (MßLs), which hydrolyse the most important antibiotics used in clinical practice. Most of the isolates were resistant to amoxicillin with clavulanic acid (36.4 %), followed by ticarcillin with clavulanic acid (22.7 %) and tetracycline (18.2 %). ESßL-producing genes blaCTX-M and blaTEM were found in three (13.6 %) and four (18.2 %) E. coli strains, respectively, while MßL genes were found in two (9.1 %). By separating at source, this pilot study clearly shows that gastrointestinal bacteria of healthy people can be an important source of antibiotic resistance released into the environment through wastewaters. One way to prevent that is to treat wastewater with a combination of TiO2, UV light, or ozone, as successful methods to remove resistant bacteria and prevent their spread in the environment.


Assuntos
Antibacterianos/isolamento & purificação , Monitoramento Ambiental/métodos , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Águas Residuárias/microbiologia , beta-Lactamases/isolamento & purificação , Projetos Piloto , Eslovênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...