Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Plast ; 2020: 8880543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082779

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect caused by chemotherapy drugs, and its existence seriously affects the quality of life of patients. We first established an oxaliplatin-induced peripheral neuropathy (OIPN) model and then measured and evaluated mechanical hyperalgesia, thermal nociception, cold allodynia, and intraepidermal nerve fiber (IENF) density to determine Siwei Jianbu Decoction's role in preventing OIPN. Then, we conducted a systematic pharmacological study that revealed important roles for the MAPK signaling pathway and proinflammatory immune pathway and confirmed these roles by western blot, immunofluorescence, and qPCR. The data show that Siwei Jianbu Decoction can effectively prevent oxaliplatin-induced neuroinflammation by inhibiting an increase in NF-κB expression via downregulation of p-ERK1/2 and p-p38. The present study showed that SWJB may be beneficial in preventing oxaliplatin-induced peripheral neuropathy.


Assuntos
Antineoplásicos/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Oxaliplatina/administração & dosagem , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais
2.
Regen Med Res ; 8: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33095154

RESUMO

BACKGROUND: Paclitaxel, a commonly used chemotherapeutic agent, is usually associated with peripheral neuropathy. Paclitaxel induced peripheral neuropathy (PIPN) can be dose limiting and may have detrimental influence on patients' quality of life. However, the mechanism of PIPN remains unclear. Medicinal herbs and their formulas might offer neuronal protection with their multitarget and integrated benefits in chemotherapy-induced peripheral neuropathy (CIPN). Siwei Jianbu decoction (J12) is a classic formula of traditional Chinese medicine which can promote blood circulation and treat diabetic nephropathy in clinical with the symptoms of weakness and pain. METHODS: The effects of J12 were treated in C57BL/6 mice before injected with Paclitaxel.Behaviour studies: Measurement of mechanical hyperalgesia, thermal nociception and cold allodynia. On the last day at the end of week 6, DRGs were obtained from mice for western blot and immunohistochemical analysis containing NF-κB, p-ERK1/2 and p-SAPK/JNK protein expression. Quantitative real-time polymerase chain reaction: mRNA expression of NF-κB, IL-1ß and TNF-α was analyzed. Additionally, the blood samples collected from the eye socket of the mouse were prepared to examine the levels of NF-κB, TNF-α, IL-6 and IL-1ß using ELISA assay kits. RESULTS: Hypersensitivity tests and pathology analysis have demonstrated that J12 could improve paclitaxel-induced peripheral pain. J12 acts by inhibiting the activation of (C-Jun N-terminal kinases) JNK, (extracellular signal-regulated kinase) ERK1/2 phosphorylation in (Mitogen-activated protein kinases) MAPK signaling pathway and the nuclear factor-κB (NF-κB) in C57BL/6 mice model, J12 also inhibits the production of inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß) and IL-6. CONCLUSION: The present study showed that J12 ameliorates paclitaxel-induced peripheral neuropathic pain.

3.
J Pharmacol Exp Ther ; 373(3): 453-462, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32238452

RESUMO

Paclitaxel (PTX) is an antineoplastic drug extracted from the Taxus species, and peripheral neuropathy is a common side effect. Paclitaxel-induced peripheral neuropathy (PIPN) seriously affects patient quality of life. Currently, the mechanism of PIPN is still unknown, and few treatments are recognized clinically. Duloxetine is recommended as the only potential treatment of chemotherapy-induced peripheral neuropathy (CIPN) by the American Society of Clinical Oncology. However, this guidance lacks a theoretical basis and experimental evidence. Our study suggested that duloxetine could improve PIPN and provide neuroprotection. We explored the potential mechanisms of duloxetine on PIPN. As a result, duloxetine acts by inhibiting poly ADP-ribose polymerase cleavage (PARP) and tumor suppressor gene p53 activation and regulating apoptosis regulator the Bcl2 family to reverse PTX-induced oxidative stress and apoptosis. Taken together, the present study shows that using duloxetine to attenuate PTX-induced peripheral nerve injury and peripheral pain may provide new clinical therapeutic targets for CIPN. SIGNIFICANCE STATEMENT: This study reported that duloxetine significantly alleviates neuropathic pain induced by paclitaxel and is related to poly ADP-ribose polymerase (PARP), tumor suppressor gene p53, and apoptosis regulator the Bcl2 family. Our findings thus not only provide important guidance to support duloxetine to become the first standard chemotherapy-induced peripheral neuropathy (CIPN) drug but also will find potential new targets and positive control for new CIPN drug development.


Assuntos
Cloridrato de Duloxetina/farmacologia , Paclitaxel/farmacologia , Traumatismos dos Nervos Periféricos/induzido quimicamente , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Bioorg Med Chem ; 28(4): 115309, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31956053

RESUMO

A new turn-on fluorescent chemosensor (RBTM) for Fe3+ was designed based on Rhodamine B and a thiocarbonylimidazole moiety. The spectroscopic probe used for characterization of the synthesized system showed 300-fold fluorescence enhancement for the detection of Fe3+ with a 1:1 stoichiometry in EtOH/H2O solution (2:1, v/v, HEPES buffer, 1 mM, pH 7.30). Upon addition of Fe3+ in aqueous ethanol, the probe displayed a significant fluorescence enhancement and a distinct color change (colorless to pink) that can be detected by the naked eye. The binding constant between the probe and Fe3+ was determined to be 1.16 × 104 M-1 and the corresponding detection limit was calculated to be 0.256 µM. In addition, the energy gaps between the HOMO and LUMO in RBTM and RBTM-Fe3+ were calculated using DFT calculations to be 92.93 kcal/mol and 37.49 kcal/mol, respectively. The results indicate that binding of Fe3+ to RBTM lowered the HOMO-LUMO energy gap of the complex and stabilized the system. Fluorescence imaging experiments demonstrated that RBTM can be used as a fluorescent probe to detect Fe3+ in MKN-45 cells and dorsal root ganglia, thus revealing that RBTM could be used for biological applications.


Assuntos
Compostos Férricos/análise , Corantes Fluorescentes/química , Gânglios Espinais/química , Neurônios/química , Imagem Óptica , Rodaminas/química , Corantes Fluorescentes/síntese química , Humanos , Íons/análise , Estrutura Molecular , Rodaminas/síntese química , Soluções , Espectrometria de Fluorescência , Células Tumorais Cultivadas , Água/química
5.
Bioorg Med Chem ; 26(8): 1823-1831, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29500129

RESUMO

A new "turn-on" fluorescent probe, RDMBM, based on the rhodamine B dye and the 2,5-pyrrolidinedione moiety was synthesized and characterized. Its sensing behavior toward various amino acids was evaluated via UV-vis and fluorescence spectroscopic techniques. The observed spectral changes showed that RDMBM displays high selectivity and sensitivity toward GSH in MeOH/H2O (1:2, v/v, pH 7.40, Tris-HCl buffer, 1 mM) solution and that it undergoes 1:1 covalent binding with GSH. More importantly, the hydrogenation and ring-opening of the nitrogen atom in the spirane structure of rhodamine B derivatives were tightly bound to the induction effects of different groups. Furthermore, fluorescence imaging applications demonstrated that RDMBM can be successfully used for the detection of GSH in human breast cancer cells MCF-7.


Assuntos
Corantes Fluorescentes/síntese química , Glutationa/análise , Rodaminas/química , Succinimidas/química , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Células MCF-7 , Microscopia de Fluorescência , Teoria Quântica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...