Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35709, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170209

RESUMO

Resistivity data has important applications in geophysical exploration, but the impact of electrode offsets on resistivity response characteristics remains unclear. This study aims to explore the influence of horizontal electrode offset angles and vertical offsets caused by topographical variations on the forward modeling of resistivity data. By analyzing experimental models with different measurement arrays, the paper revealed their influence laws on the buried depth of the target body and resistivity resolution. Utilizing tools like ZondRes3D, we conducted 3D resistivity forward modeling and analyzed the results in detail. It is found that horizontal electrode offsets lead to pseudo-anomalies in the apparent resistivity response, which is related to the offset angles and the number of electrodes. Under different conditions, the horizontal electrode offsets exhibit a "gradient variation" pattern. In addition, topographical variations can also cause distortions and offsets in the apparent resistivity curves and the locations of the anomaly response. Specifically, the measuring lines near the edge of the target bodies are more susceptible to these effects. Based on the comprehensive experimental results, we have drawn several conclusions regarding the impact of electrode offsets and topographical variations, including the effects of offset angles on the pseudo-anomalies, the anomalous response laws under different topographic conditions, as well as anomalous situations under specific angles. These findings provide crucial insights for interpreting resistivity data in geophysical exploration and addressing practical engineering problems, and offer guidance for optimizing measuring line layouts and post-processing terrain correction algorithms.

2.
Food Chem ; 455: 139854, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823121

RESUMO

This study introduces catalytic infrared radiation (CIR) heating technology as an eco-friendly alternative to conventional grape lye peeling (LP). The effects of heating time and distance on non-frozen and frozen grapes were assessed for temperature, peeling performance, and quality attributes. The findings indicate that CIR heating achieves complete dry-peeling of grapes. Extended heating times and reduced distances improve peeling performance, with more favorable results observed in frozen grapes compared to non-frozen ones. Grapes peeled using CIR demonstrated enhanced hardness, color, sugar-acid ratio, bioactive compounds, and antioxidant capacity, compared to those peeled using LP. Importantly, the frozen samples preserved their quality after CIR dry-peeling treatment. Based on peeling performance and quality attributes, the optimum heating times are established at 160 s for non-frozen grapes and 50 s for frozen grapes, at a heating distance of 5 cm. Therefore, CIR dry-peeling is recommended as an eco-friendly and quality-enhancing sustainable grape processing technology.


Assuntos
Congelamento , Frutas , Raios Infravermelhos , Vitis , Vitis/química , Vitis/efeitos da radiação , Frutas/química , Frutas/efeitos da radiação , Manipulação de Alimentos/métodos , Manipulação de Alimentos/instrumentação , Antioxidantes/química , Temperatura Alta , Cor , Temperatura , Catálise
3.
Ultrason Sonochem ; 103: 106751, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241946

RESUMO

Microbial contamination is the principal factor in the deterioration of postharvest storage quality in grapes. To mitigate this issue, we explored a synergistic treatment which combines ultrasound (US) and slightly acidic electrolyzed water (SAEW), and rigorously compared with conventional water cleaning (CW), exclusive US treatment, and standalone SAEW treatment. The US + SAEW treatment proved to be markedly superior in reducing total bacterial, mold & yeast counts on grapes. Specifically, it achieved reductions of 2.23 log CFU/g and 2.76 log CFU/g, respectively, exceeding the efficiencies of SAEW (0.78, 0.75), US (0.58, 0.65), and CW (0.24, 0.46). The efficacy of this synergistic treatment is attributed to the ultrasound removal of the wax layer on grape skins, which transitions the skin from hydrophobic to hydrophilic. This alteration increases the contact area between the grape surface and SAEW, thereby enhancing the antimicrobial efficacy of SAEW. From a physicochemical quality standpoint, the US + SAEW treatment exhibited multiple advantages. It not only minimized weight loss, color deviations, polyphenol oxidase activity and malondialdehyde synthesis in comparison to CW-treated samples but also preserved firmness, sugar-acid ratio and the activities of key enzymes including phenylalanine ammonia-lyase, superoxide dismutase and catalase, and thus maintaining high levels of total phenolics, total ascorbic acid, total anthocyanins, and antioxidants. Consequently, US + SAEW treatment put off the times of decay onset in grapes by 12 days, outperforming both SAEW (8) and US (4) in comparison to CW. These results highlight the potential of US + SAEW as an effective strategy for maintaining grape quality during their postharvest storage period.


Assuntos
Vitis , Molhabilidade , Antocianinas
4.
Ultrason Sonochem ; 101: 106668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918295

RESUMO

In the postharvest storage of Chinese bayberry, microbial loads and exogenous contaminants pose significant challenges, leading to rapid decay and deterioration in quality. This study introduced a synergistic approach, combining ultrasonics and slightly acidic electrolyzed water (US + SAEW), to enhance the postharvest storage quality of Chinese bayberry. This approach was benchmarked against conventional water washing (CW), standalone ultrasonic (US), and slightly acidic electrolyzed water (SAEW) processing. Notably, compared to CW, the US + SAEW method enhanced iprodione and procymidone removal rates by 69.62 % and 72.45 % respectively, improved dirt removal efficiency by 122.87 %, repelled drosophila melanogaster larvae by 58.33 %, and curtailed total bacterial, mold & yeast growth by 78.18 % and 83.09 %. Furthermore, it postponed the appearance of sample decay by 6 days, compared to 4 days for both US and SAEW alone. From a physicochemical perspective, compared to CW-treated samples, US + SAEW processing mitigated weight loss and color deviations, retained hardness, amplified the sugar-acid ratio, augmented activities of phenylalanine ammonia-lyase, superoxide dismutase, and catalase enzymes, suppressed polyphenol oxidase activity and malondialdehyde synthesis, and preserved total phenolic, anthocyanin, and antioxidant levels. These findings underscore the potential of US + SAEW as a strategic tool to preserve the quality of Chinese bayberry during postharvest storage.


Assuntos
Myrica , Água , Animais , Ultrassom , Drosophila melanogaster , China
5.
Foods ; 13(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201132

RESUMO

Choosing an appropriate drying method is crucial for producing dried cherry blossoms with desirable quality. This study is designed to assess the effects of seven different drying methods-hot-air drying (HAD), infrared hot-air drying (IHAD), catalytic infrared drying (CID), relative humidity drying (RHD), pulsed vacuum drying (PVD), microwave vacuum drying (MVD), and vacuum freeze drying (VFD)-on drying time and various attributes of cherry blossoms, such as appearance, bioactive compounds, antioxidant activity, α-glucosidase activity, and sensory properties. Our findings revealed that MVD recorded the shortest drying time, followed by PVD, CID, IHAD, RHD, HAD, and VFD. In qualities, VFD-dried petals exhibited superior appearance, bioactive compounds, antioxidant activity, and α-glucosidase inhibitory capability; MVD-dried petals were a close second. Furthermore, the quality of tea infusions prepared from the dried petals was found to be significantly correlated with the quality of the dried petals themselves. Regarding sensory attributes, VFD-dried petals produced tea infusions most similar in flavor and taste to those made with fresh petals and received the highest sensory evaluation scores, followed by MVD, PVD, RHD, CID, IHAD, and HAD. These results could offer a scientific foundation for the mass production of high-quality dried cherry blossoms in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA