Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(6): 4804-4818, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466231

RESUMO

Proteolysis-targeting chimera (PROTAC) is a powerful technology that can effectively trigger the degradation of target proteins. The intricate interplay among various factors leads to a heterogeneous drug response, bringing about significant challenges in comprehending drug mechanisms. Our study applied data-independent acquisition-based mass spectrometry to multidimensional proteome profiling of PROTAC (DIA-MPP) to uncover the efficacy and sensitivity of the PROTAC compound. We profiled the signal transducer and activator of transcription 3 (STAT3) PROTAC degrader in six leukemia and lymphoma cell lines under multiple conditions, demonstrating the pharmacodynamic properties and downstream biological responses. Through comparison between sensitive and insensitive cell lines, we revealed that STAT1 can be regarded as a biomarker for STAT3 PROTAC degrader, which was validated in cells, patient-derived organoids, and mouse models. These results set an example for a comprehensive description of the multidimensional PROTAC pharmacodynamic response and PROTAC drug sensitivity biomarker exploration.


Assuntos
Proteoma , Fator de Transcrição STAT3 , Animais , Camundongos , Humanos , Proteoma/metabolismo , Proteólise , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Biomarcadores/metabolismo
2.
Natl Sci Rev ; 10(8): nwad167, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575948

RESUMO

Normal adjacent tissues (NATs) of hepatocellular carcinoma (HCC) differ from healthy liver tissues and their heterogeneity may contain biological information associated with disease occurrence and clinical outcome that has yet to be fully evaluated at the proteomic level. This study provides a detailed description of the heterogeneity of NATs and the differences between NATs and healthy livers and revealed that molecular features of tumor subgroups in HCC were partially reflected in their respective NATs. Proteomic data classified HCC NATs into two subtypes (Subtypes 1 and 2), and Subtype 2 was associated with poor prognosis and high-risk recurrence. The pathway and immune features of these two subtypes were characterized. Proteomic differences between the two NAT subtypes and healthy liver tissues were further investigated using data-independent acquisition mass spectrometry, revealing the early molecular alterations associated with the progression from healthy livers to NATs. This study provides a high-quality resource for HCC researchers and clinicians and may significantly expand the knowledge of tumor NATs to eventually benefit clinical practice.

3.
J Med Chem ; 66(7): 4932-4951, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36930701

RESUMO

The CDK8-cyclin C complex is an important anti-tumor target, but unlike CDK8, cyclin C remains undruggable. Modulators regulating cyclin C activity directly are still under development. Here, a series of hydrophobic tagging-based degraders of the CDK8-cyclin C complex were designed, synthesized, and evaluated to identify the first dual degrader, LL-K8-22, which induced selective and synchronous degradation of CDK8 and cyclin C. Proteomic and immunoblot studies exhibited that LL-K8-22 significantly degraded CDK8 without reducing CDK19 and did not degrade other cyclin proteins except cyclin C. Moreover, LL-K8-22 showed enhanced anti-proliferative effects over its parental molecule, BI-1347, with potency increased by 5-fold in MDA-MB-468 cells. LL-K8-22 exhibited more pronounced effects on CDK8-cyclin C downstream signaling than BI-1347, suppressing STAT1 phosphorylation more persistently. RNA-sequencing analysis revealed that LL-K8-22 inhibited E2F- and MYC-driven carcinogenic transcriptional programs. Overall, LL-K8-22 is the first-in-class degrader of cyclin C and would be useful for studying the unknown functions of cyclin C.


Assuntos
Ciclina C , Quinases Ciclina-Dependentes , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteômica , Transdução de Sinais
4.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989086

RESUMO

Precursor proteins are translocated across the cytoplasmic membrane in Escherichia coli by the general secretory, or Sec, pathway. The main components of the pathway are the integral membrane heterotrimeric SecYEG complex and the peripheral membrane ATPase, SecA. In this study, we have applied an in vitro assay using inverted cytoplasmic membrane vesicles to investigate the complex cycle that leads to translocation. We compared the apparent rate constants for nine precursors under two experimental conditions, single turnover and multiple turnovers. For each precursor, the rate constant for a single turnover was higher than for multiple turnovers, indicating that a different step limits the rate under the two conditions. We conclude that the rate-limiting step for a single turnover is an early step in the initial phase of transit through the channel, whereas the rate of multiple turnovers is limited by the resetting of the translocon. The presence of the chaperone SecB during multiple turnovers increased the maximal amplitude translocated for the three precursor species tested, pGBP, pPhoA, and proOmpA, and also increased the apparent rate constants for both pGBP and pPhoA. The rate constant for proOmpA was decreased by the presence of SecB.IMPORTANCE Vastly different experimental techniques and conditions have been used to study export in E. coli We demonstrated that altering experimental conditions can change the step that is observed during study. Investigators should consider specific experimental conditions when comparing data from different laboratories, as well as when comparing data from different experiments within a laboratory. We have shown that each precursor species has inherent properties that determine the translocation rate; thus generalizations from studies of a single species must be made with caution. A summary of advantages and disadvantages in use of nine precursors is presented.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Canais de Translocação SEC/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligação Proteica , Transporte Proteico , Canais de Translocação SEC/genética
5.
J Mol Biol ; 427(4): 887-900, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25534082

RESUMO

During export in Escherichia coli, SecB, a homotetramer structurally organized as a dimer of dimers, forms a complex with two protomers of SecA, which is the ATPase that provides energy to transfer a precursor polypeptide through the membrane via the SecYEG translocon. There are two areas of contact on SecB that stabilize the SecA:SecB complex: the flat sides of the SecB tetramer and the C-terminal 13 residues of SecB. These contacts within the complex are distributed asymmetrically. Breaking contact between SecA and the sides of SecB results in release of only one protomer of SecA yielding a complex of stoichiometry SecA1:SecB4. This complex mediates export; however, the coupling of ATP hydrolysis to movements of the precursor through the translocon is much less efficient than the coupling by the SecA2:SecB4 complex. Here we used heterotetrameric species of SecB to understand the source of the asymmetry in the contacts and its role in the functioning of the complex. The model of interactions presented suggests a way that binding between SecA and SecB might decrease the affinity of precursor polypeptides for SecB and facilitate the transfer to SecA.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Multimerização Proteica , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
6.
Proc Natl Acad Sci U S A ; 110(29): 11815-20, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818593

RESUMO

We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Proteínas de Membrana/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Radioisótopos de Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica , Proteolipídeos/metabolismo , Canais de Translocação SEC , Radioisótopos de Enxofre/metabolismo , Vesículas Transportadoras/metabolismo
7.
J Bacteriol ; 193(1): 190-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21037004

RESUMO

SecA is the ATPase that acts as the motor for protein export in the general secretory, or Sec, system of Escherichia coli. The tetrameric cytoplasmic chaperone SecB binds to precursors of exported proteins before they can become stably folded and delivers them to SecA. During this delivery step, SecB binds to SecA. The complex between SecA and SecB that is maximally active in translocation contains two protomers of SecA bound to a tetramer of SecB. The aminoacyl residues on each protein that are involved in binding the other have previously been identified by site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy; however, that study provided no information concerning the relative orientation of the proteins within the complex. Here we used our extensive collection of single-cysteine variants of the two proteins and subjected pairwise combinations of SecA and SecB to brief oxidation to identify residues in close proximity. These data were used to generate a model for the orientation of the two proteins within the complex.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
8.
J Mol Biol ; 363(1): 63-74, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16962134

RESUMO

Export of protein into the periplasm of Escherichia coli via the general secretory system requires that the transported polypeptides be devoid of stably folded tertiary structure. Capture of the precursor polypeptides before they fold is achieved by the promiscuous binding to the chaperone SecB. SecB delivers its ligand to export sites through its specific binding to SecA, a peripheral component of the membrane translocon. At the translocon the ligand is passed from SecB to SecA and subsequently through the SecYEG channel. We have previously used site-directed spin labeling and electron paramagnetic resonance spectroscopy to establish a docking model between SecB and SecA. Here we report use of the same strategy to map the pathway of a physiologic ligand, the unfolded form of precursor galactose-binding protein, on SecB. Our set of SecB variants each containing a single cysteine, which was used in the previous study, has been expanded to 48 residues, which cover 49% of the surface of SecB. The residues on SecB involved in contacts were identified as those that, upon addition of the unfolded polypeptide ligand, showed changes in spectral line shape consistent with restricted motion of the nitroxide. We conclude that the bound precursor makes contact with a large portion of the surface of the small chaperone. The sites on SecB that interact with the ligand are compared with the previously identified sites that interact with SecA and a model for transfer of the ligand is discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Mapeamento de Interação de Proteínas , Precursores de Proteínas/metabolismo , Marcadores de Spin , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Ligantes , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Dobramento de Proteína , Propriedades de Superfície
9.
J Mol Biol ; 353(2): 295-307, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16169560

RESUMO

Export of protein into the periplasm of Escherichia coli via the general secretory system is achieved by action of a ternary complex comprising the polypeptide ligand, the chaperone SecB and SecA, a peripheral component of the membrane translocon, which is itself an ATPase. The unfolded ligand is captured initially by SecB and must be transferred to SecA and subsequently through the membrane translocon into the periplasm. We have taken the first steps in the elucidation of the mechanism of this dynamic transfer by determining the interface of interaction between SecB and SecA. Site-directed spin labeling and electron paramagnetic resonance spectroscopy were combined to identify which of the residues on SecB showed changes in spectral line shape upon addition of SecA. In all, 43% of the surface of SecB was covered by the 41 positions examined. A model of docking between SecB and SecA is proposed based on the pattern of amino acid residues on SecB shown to make contacts when in complex with SecA. This model in combination with previously published biochemical data provides insight into the transfer of the unfolded polypeptide from the chaperone SecB to SecA.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico/fisiologia , Marcadores de Spin , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Canais de Translocação SEC , Proteínas SecA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...