Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835020

RESUMO

Lagerstroemia indica L. is a well-known ornamental plant with large pyramidal racemes, long flower duration, and diverse colors and cultivars. It has been cultivated for nearly 1600 years and is essential for investigating the germplasm and assessing genetic variation to support international cultivar identification and breeding programs. In this study, 20 common Lagerstroemia indica cultivars from different varietal groups and flower morphologies, as well as multiple wild relative species, were analyzed to investigate the maternal donor of Lagerstroemia indica cultivars and to discover the genetic variation and relationships among cultivars based on plastome and nuclear ribosomal DNA (nrDNA) sequences. A total of 47 single nucleotide polymorphisms (SNPs) and 24 insertion/deletions (indels) were identified in the 20 L. indica cultivars' plastome and 25 SNPs were identified in the nrDNA. Phylogenetic analysis based on the plastome sequences showed that all the cultivars formed a clade with the species of L. indica, indicating that L. indica was the maternal donor of the cultivars. Population structure and PCA analyses supported two clades of cultivars, which exhibited significant genetic differences according to the plastome dataset. The results of the nrDNA supported that all 20 cultivars were divided into three clades and most of the cultivars had at least two genetic backgrounds and higher gene flow. Our results suggest that the plastome and nrDNA sequences can be used as molecular markers for assessing the genetic variation and relationships of L. indica cultivars.


Assuntos
Lagerstroemia , Lagerstroemia/genética , Filogenia , Melhoramento Vegetal , Flores/genética , DNA Ribossômico , Variação Genética
2.
BMC Biol ; 20(1): 92, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468824

RESUMO

BACKGROUND: Deep-branching phylogenetic relationships are often difficult to resolve because phylogenetic signals are obscured by the long history and complexity of evolutionary processes, such as ancient introgression/hybridization, polyploidization, and incomplete lineage sorting (ILS). Phylogenomics has been effective in providing information for resolving both deep- and shallow-scale relationships across all branches of the tree of life. The olive family (Oleaceae) is composed of 25 genera classified into five tribes with tribe Oleeae consisting of four subtribes. Previous phylogenetic analyses showed that ILS and/or hybridization led to phylogenetic incongruence in the family. It was essential to distinguish phylogenetic signal conflicts, and explore mechanisms for the uncertainties concerning relationships of the olive family, especially at the deep-branching nodes. RESULTS: We used the whole plastid genome and nuclear single nucleotide polymorphism (SNP) data to infer the phylogenetic relationships and to assess the variation and rates among the main clades of the olive family. We also used 2608 and 1865 orthologous nuclear genes to infer the deep-branching relationships among tribes of Oleaceae and subtribes of tribe Oleeae, respectively. Concatenated and coalescence trees based on the plastid genome, nuclear SNPs and multiple nuclear genes suggest events of ILS and/or ancient introgression during the diversification of Oleaceae. Additionally, there was extreme heterogeneity in the substitution rates across the tribes. Furthermore, our results supported that introgression/hybridization, rather than ILS, is the main factor for phylogenetic discordance among the five tribes of Oleaceae. The tribe Oleeae is supported to have originated via ancient hybridization and polyploidy, and its most likely parentages are the ancestral lineage of Jasmineae or its sister group, which is a "ghost lineage," and Forsythieae. However, ILS and ancient introgression are mainly responsible for the phylogenetic discordance among the four subtribes of tribe Oleeae. CONCLUSIONS: This study showcases that using multiple sequence datasets (plastid genomes, nuclear SNPs and thousands of nuclear genes) and diverse phylogenomic methods such as data partition, heterogeneous models, quantifying introgression via branch lengths (QuIBL) analysis, and species network analysis can facilitate untangling long and complex evolutionary processes of ancient introgression, paleopolyploidization, and ILS.


Assuntos
Genomas de Plastídeos , Olea , Hibridização Genética , Olea/genética , Filogenia , Poliploidia
3.
Mol Phylogenet Evol ; 166: 107330, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687844

RESUMO

Catalpa Scop. (Bignoniaceae) is a small genus (8 spp.) of trees that is disjunctly distributed among eastern Asia, eastern United States, and the West Indies. Catalpa bears beautiful inflorescences and have been cultivated as important ornamental trees for landscaping, gardening, and timber. However, the phylogenetic relationships and biogeographic history of the genus have remained unresolved. In this study, we used a large genomic dataset that includes data from the chloroplast (plastomes), and nuclear genomes (ITS and 5,759 single-copy nuclear genes) to reconstruct phylogenetic relationship within Catalpa, test interspecific gene flow events within the genus, and infer its biogeographic history. Our phylogenetic results indicate that Catalpa is monophyletic containing two main clades, section Catalpa and section Macrocatalpa. Section Catalpa is further divided into three subclades. While most relationships are congruent between the chloroplast and nuclear datasets, the position of C. ovata differs, likely due to incomplete lineage sorting. Interspecific gene flow events include C. bungei s.s. with vectors of inheritance from C. duclouxii and C. fargesii, supporting a combination of these three species and recognizing a broadly circumscribed C. bungei s.l. Our biogeographic study suggests three main dispersal events, two of which occurred during the Oligocene. The first dispersal event occurred from southwestern North America and Mexico into the Greater Antilles giving rise to the ancestor of the section of Macrocatalpa. The second dispersal event also occurred from southwestern North America and Mexico, but led to central and northern North America, subsequently reaching China through the Bering land bridge, and also reaching Europe through the North Atlantic land bridge. The third dispersal event took place in the Miocene from China to North America and gave rise to a clade composed of C. bignonioides and C. speciosa. This study uses a phylogenomic approach and biogeographical methods to infer the evolutionary history of Catalpa, highlighting issues associated with gene tree discordance, and suggesting that incomplete lineage sorting likely played an important role in the evolutionary history of Catalpa.


Assuntos
Bignoniaceae , Bignoniaceae/genética , Evolução Biológica , Genômica , Filogenia , Filogeografia
4.
BMC Genomics ; 22(1): 434, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107868

RESUMO

BACKGROUND: Crape myrtles, belonging to the genus Lagerstroemia L., have beautiful paniculate inflorescences and are cultivated as important ornamental tree species for landscaping and gardening. However, the phylogenetic relationships within Lagerstroemia have remained unresolved likely caused by limited sampling and the insufficient number of informative sites used in previous studies. RESULTS: In this study, we sequenced 20 Lagerstroemia chloroplast genomes and combined with 15 existing chloroplast genomes from the genus to investigate the phylogenetic relationships and divergence times within Lagerstroemia. The phylogenetic results indicated that this genus is a monophyletic group containing four clades. Our dating analysis suggested that Lagerstroemia originated in the late Paleocene (~ 60 Ma) and started to diversify in the middle Miocene. The diversification of most species occurred during the Pleistocene. Four variable loci, trnD-trnY-trnE, rrn16-trnI, ndhF-rpl32-trnL and ycf1, were discovered in the Lagerstroemia chloroplast genomes. CONCLUSIONS: The chloroplast genome information was successfully utilized for molecular characterization of diverse crape myrtle samples. Our results are valuable for the global genetic diversity assessment, conservation and utilization of Lagerstroemia.


Assuntos
Genoma de Cloroplastos , Lagerstroemia , Lythraceae , Cloroplastos/genética , Lagerstroemia/genética , Lythraceae/genética , Filogenia
5.
BMC Genomics ; 22(1): 293, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888057

RESUMO

BACKGROUND: Most Distylium species are endangered. Distylium species mostly display homoplasy in their flowers and fruits, and are classified primarily based on leaf morphology. However, leaf size, shape, and serration vary tremendously making it difficult to use those characters to identify most species and a significant challenge to address the taxonomy of Distylium. To infer robust relationships and develop variable markers to identify Distylium species, we sequenced most of the Distylium species chloroplast genomes. RESULTS: The Distylium chloroplast genome size was 159,041-159,127 bp and encoded 80 protein-coding, 30 transfer RNAs, and 4 ribosomal RNA genes. There was a conserved gene order and a typical quadripartite structure. Phylogenomic analysis based on whole chloroplast genome sequences yielded a highly resolved phylogenetic tree and formed a monophyletic group containing four Distylium clades. A dating analysis suggested that Distylium originated in the Oligocene (34.39 Ma) and diversified within approximately 1 Ma. The evidence shows that Distylium is a rapidly radiating group. Four highly variable markers, matK-trnK, ndhC-trnV, ycf1, and trnT-trnL, and 74 polymorphic simple sequence repeats were discovered in the Distylium plastomes. CONCLUSIONS: The plastome sequences had sufficient polymorphic information to resolve phylogenetic relationships and identify Distylium species accurately.


Assuntos
Genoma de Cloroplastos , Hamamelidaceae , Cloroplastos/genética , Evolução Molecular , Filogenia
6.
BMC Plant Biol ; 18(1): 210, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257644

RESUMO

BACKGROUND: Fruits of persimmon plants are traditional healthy food in China, Korea and Japan. However, due to the shortage of morphological and DNA markers, the development of persimmon industry has been heavily inhibited. RESULTS: Chloroplast genomes of Diospyros cathayensis, D. virginiana, D. rhombifolia and D. deyangensis were newly sequenced. Comparative analyses of ten chloroplast genomes including six previously published chloroplast genomes of Diospyros provided new insights into the genome sequence diversity and genomic resources of the genus. Eight hyper-variable regions, trnH-psbA, rps16-trnQ, rpoB-trnC, rps4-trnT-trnL, ndhF, ndhF-rpl32-trnL, ycf1a, and ycf1b, were discovered and can be used as chloroplast DNA markers at/above species levels. The complete chloroplast genome sequences provided the best resolution at inter-specific level in comparison with different chloroplast DNA sequence datasets. CONCLUSION: Diospyros oleifera, D. deyangensis, D. virginiana, D. glaucifolia, D. lotus and D. jinzaoshi are important wild species closely related to the cultivated persimmon D. kaki. The hyper-variable regions can be used as DNA markers for global genetic diversity detection of Diospyros. Deeper study on these taxa would be helpful for elucidating the origin of D. kaki.


Assuntos
Diospyros/genética , Genoma de Cloroplastos , Filogenia , DNA de Cloroplastos , Marcadores Genéticos , Variação Genética
7.
Front Plant Sci ; 8: 1148, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713409

RESUMO

Walnuts (Juglans of the Juglandaceae) are well-known economically important resource plants for the edible nuts, high-quality wood, and medicinal use, with a distribution from tropical to temperate zones and from Asia to Europe and Americas. There are about 21 species in Juglans. Classification of Juglans at section level is problematic, because the phylogenetic position of Juglans cinerea is disputable. Lacking morphological and DNA markers severely inhibited the development of related researches. In this study, the complete chloroplast genomes and two nuclear DNA regions (the internal transcribed spacer and ubiquitin ligase gene) of 10 representative taxa of Juglans were used for comparative genomic analyses in order to deepen the understanding on the application value of genetic information for inferring the phylogenetic relationship of the genus. The Juglans chloroplast genomes possessed the typical quadripartite structure of angiosperms, consisting of a pair of inverted repeat regions separated by a large single-copy region and a small single-copy region. All the 10 chloroplast genomes possessed 112 unique genes arranged in the same order, including 78 protein-coding, 30 tRNA, and 4 rRNA genes. A combined sequence data set from two nuclear DNA regions revealed that Juglans plants could be classified into three branches: (1) section Juglans, (2) section Cardiocaryon including J. cinerea which is closer to J. mandshurica, and (3) section Rhysocaryon. However, three branches with a different phylogenetic topology were recognized in Juglans using the complete chloroplast genome sequences: (1) section Juglans, (2) section Cardiocaryon, and (3) section Rhysocaryon plus J. cinerea. The molecular taxonomy of Juglans is almost compatible to the morphological taxonomy except J. cinerea (section Trachycaryon). Based on the complete chloroplast genome sequence data, the divergence time between section Juglans and section Cardiocaryon was 44.77 Mya, while section Rhysocaryon diverged from other sections in the genus Juglans was 47.61 Mya. Eleven of the 12 small inversions in the chloroplast genomes provided valuable phylogenetic information for classification of walnut plants at section and species levels. Our results are valuable for future studies on Juglans genetic diversity and will enhance the understanding on the phylogenetic evolution of Juglandaceae.

8.
Front Plant Sci ; 8: 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28154574

RESUMO

Crape myrtles are economically important ornamental trees of the genus Lagerstroemia L. (Lythraceae), with a distribution from tropical to northern temperate zones. They are positioned phylogenetically to a large subclade of rosids (in the eudicots) which contain more than 25% of all the angiosperms. They commonly bloom from summer till fall and are of significant value in city landscape and environmental protection. Morphological traits are shared inter-specifically among plants of Lagerstroemia to certain extent and are also influenced by environmental conditions and different developmental stages. Thus, classification of plants in Lagerstroemia at species and cultivar levels is still a challenging task. Chloroplast (cp) genome sequences have been proven to be an informative and valuable source of cp DNA markers for genetic diversity evaluation. In this study, the complete cp genomes of three Lagerstroemia species were newly sequenced, and three other published cp genome sequences of Lagerstroemia were retrieved for comparative analyses in order to obtain an upgraded understanding of the application value of genetic information from the cp genomes. The six cp genomes ranged from 152,049 bp (L. subcostata) to 152,526 bp (L. speciosa) in length. We analyzed nucleotide substitutions, insertions/deletions, and simple sequence repeats in the cp genomes, and discovered 12 relatively highly variable regions that will potentially provide plastid markers for further taxonomic, phylogenetic, and population genetics studies in Lagerstroemia. The phylogenetic relationships of the Lagerstroemia taxa inferred from the datasets from the cp genomes obtained high support, indicating that cp genome data may be useful in resolving relationships in this genus.

9.
PeerJ ; 4: e2699, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867769

RESUMO

The Haloxylon genus belongs to the Amaranthaceae (formerly Chenopodiaceae) family. The small trees or shrubs in this genus are referred to as the King of psammophytic plants, and perform important functions in environmental protection, including wind control and sand fixation in deserts. To better understand these beneficial plants, we sequenced the chloroplast (cp) genomes of Haloxylon ammodendron (HA) and Haloxylon persicum (HP) and conducted comparative genomic analyses on these and two other representative Amaranthaceae species. Similar to other higher plants, we found that the Haloxylon cp genome is a quadripartite, double-stranded, circular DNA molecule of 151,570 bp in HA and 151,586 bp in HP. It contains a pair of inverted repeats (24,171 bp in HA and 24,177 bp in HP) that separate the genome into a large single copy region of 84,214 bp in HA and 84,217 bp in HP, and a small single copy region of 19,014 bp in HA and 19,015 bp in HP. Each Haloxylon cp genome contains 112 genes, including 78 coding, 30 tRNA, and four ribosomal RNA genes. We detected 59 different simple sequence repeat loci, including 44 mono-nucleotide, three di-nucleotide, one tri-nucleotide, and 11 tetra-nucleotide repeats. Comparative analysis revealed only 67 mutations between the two species, including 44 substitutions, 23 insertions/deletions, and two micro-inversions. The two inversions, with lengths of 14 and 3 bp, occur in the petA-psbJ intergenic region and rpl16 intron, respectively, and are predicted to form hairpin structures with repeat sequences of 27 and 19 bp, respectively, at the two ends. The ratio of transitions to transversions was 0.76. These results are valuable for future studies on Haloxylon genetic diversity and will enhance our understanding of the phylogenetic evolution of Amaranthaceae.

10.
Biotechnol Rep (Amst) ; 5: 40-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28626681

RESUMO

Development of more sensitive nuclear DNA markers for identification of species, particularly closely allied taxa has been a challenging task that has attracted interest from scientists in fields of biotechnological development and genetic diversity detection. In this study, the sequence of the ubiquitin ligase gene (UBE3) region of nuclear DNA was tested for applicability and efficacy in revealing genetic diversity of walnut resources, with an emphasis on inter- and intra-specific levels. Analysis on genetic relationship among the taxa was conducted with the neighbor-joining (NJ) method. The number of variable bases in the UBE3 region was 20 sites. All nine taxa (species/variety/cultivars) were distinguished using the UBE3 sequence. In addition, each taxon was characterized molecularly with a unique nucleotide molecular formula using ten variable base sites derived from the nuclear DNA UBE3 gene sequence. This study presents a good complementary methodology for developing new DNA markers for identification of genus Juglans.

11.
Plant Cell Rep ; 31(12): 2199-213, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22961193

RESUMO

KEY MESSAGE: Highly variable regions of chloroplast genome were found to be useful in the detection of plant genetic diversity at micro-evolution level. Our methodology will improve understanding and conservation of plant diversity. Tree peonies are famous flowers with about 2,000 cultivars in the world, belonging to Paeonia sect. Moutan of the Paeoniaceae. They are traditionally classified based on flower forms and colors. Due to the limited number of DNA and morphological markers, and the existence of synonyms and homonyms, evaluation on genetic diversity of so many cultivars remains a challenge. In most cases, it is difficult and even impossible to discriminate tree peony cultivars when they are not in flower. In this study, single nucleotide polymorphism detected from the hyper-variable regions of chloroplast genome was employed to separate tree peony cultivars into different maternal lineages which can be expressed briefly by a nucleotide molecular formula. Our approach enabled a much higher resolution of cultivar identification and classification that has not been obtained before. The newly developed hyper-variable chloroplast markers, as an independent source of taxonomic characteristics, provided novel evidences and higher resolution ability that are helpful in building an effective classification system for evaluation, conservation, and utilization of the tree peony germplasm resources at cultivar level.


Assuntos
Cloroplastos/genética , DNA de Cloroplastos/genética , Evolução Molecular , Flores/genética , Paeonia/genética , Polimorfismo de Nucleotídeo Único , Cor , Flores/fisiologia , Marcadores Genéticos , Genoma de Cloroplastos , Paeonia/classificação , Paeonia/fisiologia , Fenótipo , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...