Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619457

RESUMO

In our recent publication, we have proposed a revised base excision repair pathway in which DNA polymerase ß (Polß) catalyzes Schiff base formation prior to the gap-filling DNA synthesis followed by ß-elimination. In addition, the polymerase activity of Polß employs the "three-metal ion mechanism" instead of the long-standing "two-metal ion mechanism" to catalyze phosphodiester bond formation based on the fact derived from time-resolved x-ray crystallography that a third Mg2+ was captured in the polymerase active site after the chemical reaction was initiated. In this study, we develop the models of the uncross-linked and cross-linked Polß complexes and investigate the "three-metal ion mechanism" vs the "two-metal ion mechanism" by using the quantum mechanics/molecular mechanics molecular dynamics simulations. Our results suggest that the presence of the third Mg2+ ion stabilizes the reaction-state structures, strengthens correct nucleotide binding, and accelerates phosphodiester bond formation. The improved understanding of Polß's catalytic mechanism provides valuable insights into DNA replication and damage repair.


Assuntos
DNA Polimerase beta , Catálise , Replicação do DNA , Magnésio , Simulação de Dinâmica Molecular , Biocatálise
2.
Mol Cell ; 84(11): 2036-2052.e7, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688279

RESUMO

Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.


Assuntos
Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Uracila-DNA Glicosidase , Uracila , Humanos , Uracila/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Reparo do DNA/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
3.
DNA Repair (Amst) ; 137: 103666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492429

RESUMO

Mitochondrial DNA (mtDNA) plays a key role in mitochondrial and cellular functions. mtDNA is maintained by active DNA turnover and base excision repair (BER). In BER, one of the toxic repair intermediates is 5'-deoxyribose phosphate (5'dRp). Human mitochondrial DNA polymerase γ has weak dRp lyase activities, and another known dRp lyase in the nucleus, human DNA polymerase ß, can also localize to mitochondria in certain cell and tissue types. Nonetheless, whether additional proteins have the ability to remove 5'dRp in mitochondria remains unknown. Our prior work on the AP lyase activity of mitochondrial transcription factor A (TFAM) has prompted us to examine its ability to remove 5'dRp residues in vitro. TFAM is the primary DNA-packaging factor in human mitochondria and interacts with mitochondrial DNA extensively. Our data demonstrate that TFAM has the dRp lyase activity with different DNA substrates. Under single-turnover conditions, TFAM removes 5'dRp residues at a rate comparable to that of DNA polymerase (pol) ß, albeit slower than that of pol λ. Among the three proteins examined, pol λ shows the highest single-turnover rates in dRp lyase reactions. The catalytic effect of TFAM is facilitated by lysine residues of TFAM via Schiff base chemistry, as evidenced by the observation of dRp-lysine adducts in mass spectrometry experiments. The catalytic effect of TFAM observed here is analogous to the AP lyase activity of TFAM reported previously. Together, these results suggest a potential role of TFAM in preventing the accumulation of toxic DNA repair intermediates.


Assuntos
DNA Polimerase beta , Liases , Fósforo-Oxigênio Liases , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Liases/metabolismo , Lisina , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Polimerase gama/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição , Proteínas Mitocondriais/metabolismo
4.
ACS Appl Mater Interfaces ; 16(2): 1969-1984, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181175

RESUMO

Exosomes possess several inherent properties that make them ideal for biomedical applications, including robust stability, biocompatibility, minimal immunogenicity, and the ability to cross biological barriers. These natural nanoparticles have recently been developed as drug delivery vesicles. To do so, therapeutic molecules must be efficiently loaded into exosomes first. Very recently, we developed a cell-penetrating peptide (CPP)-based platform for loading of nucleic acids and small molecules into exosomes by taking advantage of the membrane-penetration power of CPPs. Here, we extended this simple but effective platform by loading a protein cargo into exosomes isolated from either mesenchymal stem cells from three different sources or two different cancer cell lines. The protein cargo is a fusion protein YARA-FGF1-GFP through the covalent conjugation of a model CPP called YARA to human fibroblast growth factor 1 (FGF1) and green fluorescence protein (GFP). Loading of YARA-FGF1-GFP into exosomes was time-dependent and reached a maximum of about 1600 YARA-FGF1-GFP molecules in each exosome after 16 h. The ladened exosomes were effectively internalized by mammalian cells, and subsequently, the loaded protein cargo YARA-FGF1-GFP was delivered intracellularly. In comparison to YARA, YARA-FGF1-GFP, the unloaded exosomes, and the exosomes loaded with YARA, the exosomes loaded with YARA-FGF1-GFP substantially promoted the migration, proliferation, and invasion capabilities of mouse and human fibroblasts, which are important factors for wound repair. The work extended our CPP-based exosomal cargo loading platform and established a foundation for developing novel wound-healing therapies using exosomes loaded with FGF1 and other growth factors.


Assuntos
Exossomos , Fator 1 de Crescimento de Fibroblastos , Animais , Humanos , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Exossomos/metabolismo , Cicatrização , Proliferação de Células , Fibroblastos , Mamíferos
5.
Cells ; 12(14)2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37508544

RESUMO

Liver cancer is a global health challenge as it is the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is often found in liver cells, where it is associated with high morbidity and mortality rates. Recent studies have shown that extracellular vesicles (EVs) secreted by HCC cells play a critical role in HCC progression and metastasis. EVs contain proteins, nucleic acids, lipids, and metabolites as cargos. EVs derived from HCC cells can transfer oncogenic factors to surrounding cells leading to increased tumor growth, cell invasion, and angiogenesis. In this review, we summarize the roles that EVs play and the specific effects of their cargos on HCC progression and metastasis and identify potential therapeutic targets for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Exossomos , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Hepatócitos/metabolismo
6.
Cells ; 12(3)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766748

RESUMO

Hepatitis C Virus NS3/NS4A, a serine protease complex, has been found to interact with many host proteins and cause various adverse effects on cellular function and immune response. For example, the cleavage of important immune factors by NS3/NS4A has been suggested as a mechanism for the hepatitis C virus to evade innate immunity. The spectrum of susceptible substrates for NS3/NS4A cleavage certainly includes important immune modulator kinases such as IKKα, IKKß, IKKε, and TBK1, as demonstrated in this paper. We show that the kinase activities of these four host kinases were transformed in unexpected ways by NS3/NS4A. Treatment with NS3/NS4A caused a significant reduction in the kinase activities of both IKKα and IKKß, suggesting that HCV might use its NS3/NS4A protease activity to deactivate the NF-κB-associated innate immune responses. In contrast, the kinase activities of both IKKε and TBK1 were enhanced after NS3/NS4A treatment, and more strikingly, the enhancement was more than 10-fold within 20 min of treatment. Our mass spectroscopic results suggested that the cleavage after Cys89 in the kinase domain of IKKε by NS3/NS4A led to their higher kinase activities, and three potential mechanisms were discussed. The observed kinase activity enhancement might facilitate the activation of both IKKε- and TBK1-dependent cellular antiviral pathways, likely contributing to spontaneous clearance of the virus and observed acute HCV infection. After longer than 20 min cleavage, both IKKε- and TBK1 gradually lost their kinase activities and the relevant antiviral pathways were expected to be inactivated, facilitating the establishment of chronic HCV infection.


Assuntos
Hepatite C , Quinase I-kappa B , Humanos , Quinase I-kappa B/metabolismo , Hepacivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina Proteases/metabolismo , Antivirais/metabolismo
7.
ACS Appl Mater Interfaces ; 15(3): 3851-3866, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36638205

RESUMO

Exosomes, membrane-bound nanosized vesicles of biologic origin, are known to contain various molecules, e.g., proteins, lipids, and nucleic acids, which contribute to the exosomes' ability to mediate cell-to-cell communication. Recent impediments of artificial nanoparticles in drug delivery, including low cellular uptake, activation of the immune system, and tissue obstacles, have led scientists to engineer exosomes as drug delivery vehicles. Though exosomes possess inherent properties of stability, biocompatibility, low immunogenicity, and capability to cross biological barriers, there is a need to develop technologies that allow the efficient loading of therapeutic materials into exosomes. Here, we introduced a simple peptide-equipped technology that can enhance the cargo-loading potential of exosomes in a mild loading environment. Specifically, a known cell-penetrating peptide, YARA, derived from human immunodeficiency virus-1 trans-activator of transcription, was covalently conjugated with miR-21-5p, a mammalian microRNA. The conjugate YARA-miR-21-5p was then incubated with exosomes, isolated from either mesenchymal stem cells or cancer cells, for loading. Exosomal loading of YARA-miR-21-5p was time-dependent and demonstrated an impressive 18.6-fold increase in efficiency over exosomal loading of miR-21-5p through incubation. After effective cellular uptake, the loaded exosomes rapidly delivered YARA-miR-21-5p into mammalian cells. Relative to unloaded exosomes and free YARA-miR-21-5p, the loaded exosomes significantly enhanced the proliferation, migration, and invasion of human and mouse fibroblasts, which are vital steps in wound healing. This study lays the groundwork for using cell-penetrating peptides as an innovative approach to efficiently load therapeutic cargos, e.g., microRNAs, into exosomes, which can then be employed to deliver the cargos into cells to yield biological effects.


Assuntos
Exossomos , MicroRNAs , Camundongos , Animais , Humanos , MicroRNAs/genética , Exossomos/metabolismo , Linhagem Celular Tumoral , Peptídeos/metabolismo , Mamíferos/metabolismo
8.
J Biol Chem ; 299(1): 102796, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528060

RESUMO

Phosphorylation of Inhibitor of κB (IκB) proteins by IκB Kinase ß (IKKß) leads to IκB degradation and subsequent activation of nuclear factor κB transcription factors. Of particular interest is the IKKß-catalyzed phosphorylation of IκBα residues Ser32 and Ser36 within a conserved destruction box motif. To investigate the catalytic mechanism of IKKß, we performed pre-steady-state kinetic analysis of the phosphorylation of IκBα protein substrates catalyzed by constitutively active, human IKKß. Phosphorylation of full-length IκBα catalyzed by IKKß was characterized by a fast exponential phase followed by a slower linear phase. The maximum observed rate (kp) of IKKß-catalyzed phosphorylation of IκBα was 0.32 s-1 and the binding affinity of ATP for the IKKß•IκBα complex (Kd) was 12 µM. Substitution of either Ser32 or Ser36 with Ala, Asp, or Cys reduced the amplitude of the exponential phase by approximately 2-fold. Thus, the exponential phase was attributed to phosphorylation of IκBα at Ser32 and Ser36, whereas the slower linear phase was attributed to phosphorylation of other residues. Interestingly, the exponential rate of phosphorylation of the IκBα(S32D) phosphomimetic amino acid substitution mutant was nearly twice that of WT IκBα and 4-fold faster than any of the other IκBα amino acid substitution mutants, suggesting that phosphorylation of Ser32 increases the phosphorylation rate of Ser36. These conclusions were supported by parallel experiments using GST-IκBα(1-54) fusion protein substrates bearing the first 54 residues of IκBα. Our data suggest a model wherein, IKKß phosphorylates IκBα at Ser32 followed by Ser36 within a single binding event.


Assuntos
Quinase I-kappa B , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Cinética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
9.
Med Res Rev ; 42(6): 2102-2125, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35757979

RESUMO

Extracellular vesicles are membranous particles, ranging from 30 nm to 10 µm in diameter, which are released by nearly all cell types to aid in intercellular communication. These complex vesicles carry a multitude of signaling moieties from their cell of origin, such as proteins, lipids, cell surface receptors, enzymes, cytokines, metabolites, and nucleic acids. A growing body of evidence suggests that in addition to delivering cargos into target cells to facilitate intercellular communication, extracellular vesicles may also play roles in such processes as cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. As these vesicles have natural biocompatibility, stability in circulation, low toxicity, and low immunogenicity, and serve as efficient carriers of molecular cargos, these nanoparticles are ideal therapeutic candidates for regenerative medicine. Exploring and identifying the homeostatic functions of extracellular vesicles may facilitate the development of new regenerative therapies. In this review, we summarize the wound healing process, difficulties in stem cell therapies for regenerative medicine, and the applications of mesenchymal stromal cell-derived extracellular vesicles in improving and accelerating the wound healing process.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Lipídeos , Cicatrização
10.
Proc Natl Acad Sci U S A ; 119(10): e2118940119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238634

RESUMO

SignificanceBase excision repair (BER) is one of the major DNA repair pathways used to fix a myriad of cellular DNA lesions. The enzymes involved in BER, including DNA polymerase ß (Polß), have been identified and characterized, but how they act together to efficiently perform BER has not been fully understood. Through gel electrophoresis, mass spectrometry, and kinetic analysis, we discovered that the two enzymatic activities of Polß can be interlocked, rather than functioning independently from each other, when processing DNA intermediates formed in BER. The finding prompted us to hypothesize a modified BER pathway. Through conventional and time-resolved X-ray crystallography, we solved 11 high-resolution crystal structures of cross-linked Polß complexes and proposed a detailed chemical mechanism for Polß's 5'-deoxyribose-5-phosphate lyase activity.


Assuntos
Dano ao DNA , DNA Polimerase beta/metabolismo , Reparo do DNA , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase beta/química , Eletroforese em Gel de Poliacrilamida , Cinética , Espectrometria de Massas/métodos , Conformação Proteica , Bases de Schiff/química , Especificidade por Substrato
11.
JACS Au ; 2(2): 341-356, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35252985

RESUMO

During DNA polymerization, the Y-family DNA polymerases are capable of bypassing various DNA damage, which can stall the replication fork progression. It has been well acknowledged that the structures of the Y-family DNA polymerases have been naturally evolved to undertake this vital task. However, the mechanisms of how these proteins utilize their unique structural and conformational dynamical features to perform the translesion DNA synthesis are less understood. Here, we developed structure-based models to study the precatalytic DNA polymerization process, including DNA and nucleotide binding to DPO4, a paradigmatic Y-family polymerase from Sulfolobus solfataricus. We studied the interplay between the folding and the conformational dynamics of DPO4 and found that DPO4 undergoes first unraveling (unfolding) and then folding for accomplishing the functional "open-to-closed" conformational transition. DNA binding dynamically modulates the conformational equilibrium in DPO4 during the stepwise binding through different types of interactions, leading to different conformational distributions of DPO4 at different DNA binding stages. We observed that nucleotide binding induces modulation of a few contacts surrounding the active site of the DPO4-DNA complex associated with a high free energy barrier. Our simulation results resonate with the experimental evidence that the conformational change at the active site led by nucleotide is the rate-limiting step of nucleotide incorporation. In combination with localized frustration analyses, we underlined the importance of DPO4 conformational dynamics and fluctuations in facilitating DNA and nucleotide binding. Our findings offer mechanistic insights into the processes of DPO4 conformational dynamics associated with the substrate binding and contribute to the understanding of the "structure-dynamics-function" relationship in the Y-family DNA polymerases.

12.
Cells ; 10(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34440728

RESUMO

Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.


Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa , Animais , Exossomos/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual
13.
J Mol Biol ; 433(5): 166811, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33450252

RESUMO

Base excision repair (BER) is the primary pathway by which eukaryotic cells resolve single base damage. One common example of single base damage is 8-oxo-7,8-dihydro-2'-deoxoguanine (8-oxoG). High incidence and mutagenic potential of 8-oxoG necessitate rapid and efficient DNA repair. How BER enzymes coordinate their activities to resolve 8-oxoG damage while limiting cytotoxic BER intermediates from propagating genomic instability remains unclear. Here we use single-molecule Förster resonance energy transfer (smFRET) and ensemble-level techniques to characterize the activities and interactions of consecutive BER enzymes important for repair of 8-oxoG. In addition to characterizing the damage searching and processing mechanisms of human 8-oxoguanine glycosylase 1 (hOGG1), our data support the existence of a ternary complex between hOGG1, the damaged DNA substrate, and human AP endonuclease 1 (APE1). Our results indicate that hOGG1 is actively displaced from its abasic site containing product by protein-protein interactions with APE1 to ensure timely repair of damaged DNA.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/análogos & derivados , DNA Glicosilases/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA/química , 8-Hidroxi-2'-Desoxiguanosina/química , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Sítios de Ligação , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Genoma Humano , Instabilidade Genômica , Humanos , Cinética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Imagem Individual de Molécula , Especificidade por Substrato
14.
Eur J Med Chem ; 213: 113135, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33454548

RESUMO

Many successful anti-viral and anti-cancer drugs are nucleoside analogs, which disrupt RNA and/or DNA synthesis. Here, we present liver-specific prodrugs of the chemotherapy drug gemcitabine (2',2'-difluorodeoxycytidine) for the treatment of hepatitis C virus (HCV) infection and hepatocellular carcinoma. The prodrugs were synthesized by introducing aromatic functional moieties to the cytosine 4-NH2 group of gemcitabine via amide bonds. The chemical modification was designed to i) enable passive diffusion across cellular membrane, ii) protect the prodrugs from inactivating deamination by cellular enzymes, and iii) allow release of active gemcitabine after amide hydrolysis by high levels of carboxylesterases in the liver. We found that many of our prodrugs exhibited similar toxicity as gemcitabine toward liver- and kidney-derived cancer cell lines but were 24- to 620-fold less cytotoxic than gemcitabine in breast- and pancreas-derived cancer cells, respectively. The prodrugs also inhibited an HCV replicon with IC50 values ranging from 10 nM-1.7 µM. Moreover, many of the prodrugs had therapeutic index values of >10,000 and have synergetic effects when combined with other Food and Drug Administration-approved anti-HCV small molecule drugs. These characteristics support the development of gemcitabine prodrugs as liver-specific therapeutics.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Desoxicitidina/análogos & derivados , Hepatite C/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Pró-Fármacos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/síntese química , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Hepacivirus/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos , Gencitabina
15.
Elife ; 92020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33079059

RESUMO

The way in which multidomain proteins fold has been a puzzling question for decades. Until now, the mechanisms and functions of domain interactions involved in multidomain protein folding have been obscure. Here, we develop structure-based models to investigate the folding and DNA-binding processes of the multidomain Y-family DNA polymerase IV (DPO4). We uncover shifts in the folding mechanism among ordered domain-wise folding, backtracking folding, and cooperative folding, modulated by interdomain interactions. These lead to 'U-shaped' DPO4 folding kinetics. We characterize the effects of interdomain flexibility on the promotion of DPO4-DNA (un)binding, which probably contributes to the ability of DPO4 to bypass DNA lesions, which is a known biological role of Y-family polymerases. We suggest that the native topology of DPO4 leads to a trade-off between fast, stable folding and tight functional DNA binding. Our approach provides an effective way to quantitatively correlate the roles of protein interactions in conformational dynamics at the multidomain level.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Dobramento de Proteína , DNA/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/química , Conformação Proteica , Domínios Proteicos , Termodinâmica
16.
J Biol Chem ; 295(50): 17251-17264, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33051204

RESUMO

In eukaryotic DNA replication, DNA polymerase ε (Polε) is responsible for leading strand synthesis, whereas DNA polymerases α and δ synthesize the lagging strand. The human Polε (hPolε) holoenzyme is comprised of the catalytic p261 subunit and the noncatalytic p59, p17, and p12 small subunits. So far, the contribution of the noncatalytic subunits to hPolε function is not well understood. Using pre-steady-state kinetic methods, we established a minimal kinetic mechanism for DNA polymerization and editing catalyzed by the hPolε holoenzyme. Compared with the 140-kDa N-terminal catalytic fragment of p261 (p261N), which we kinetically characterized in our earlier studies, the presence of the p261 C-terminal domain (p261C) and the three small subunits increased the DNA binding affinity and the base substitution fidelity. Although the small subunits enhanced correct nucleotide incorporation efficiency, there was a wide range of rate constants when incorporating a correct nucleotide over a single-base mismatch. Surprisingly, the 3'→5' exonuclease activity of the hPolε holoenzyme was significantly slower than that of p261N when editing both matched and mismatched DNA substrates. This suggests that the presence of p261C and the three small subunits regulates the 3'→5' exonuclease activity of the hPolε holoenzyme. Together, the 3'→5' exonuclease activity and the variable mismatch extension activity modulate the overall fidelity of the hPolε holoenzyme by up to 3 orders of magnitude. Thus, the presence of p261C and the three noncatalytic subunits optimizes the dual enzymatic activities of the catalytic p261 subunit and makes the hPolε holoenzyme an efficient and faithful replicative DNA polymerase.


Assuntos
DNA Polimerase II/química , DNA/química , Exodesoxirribonucleases/química , Proteínas de Ligação a Poli-ADP-Ribose/química , DNA/biossíntese , DNA/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Holoenzimas , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo
17.
Cancer Res ; 80(24): 5606-5618, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938641

RESUMO

POLE mutations are a major cause of hypermutant cancers, yet questions remain regarding mechanisms of tumorigenesis, genotype-phenotype correlation, and therapeutic considerations. In this study, we establish mouse models harboring cancer-associated POLE mutations P286R and S459F, which cause rapid albeit distinct time to cancer initiation in vivo, independent of their exonuclease activity. Mouse and human correlates enabled novel stratification of POLE mutations into three groups based on clinical phenotype and mutagenicity. Cancers driven by these mutations displayed striking resemblance to the human ultrahypermutation and specific signatures. Furthermore, Pole-driven cancers exhibited a continuous and stochastic mutagenesis mechanism, resulting in intertumoral and intratumoral heterogeneity. Checkpoint blockade did not prevent Pole lymphomas, but rather likely promoted lymphomagenesis as observed in humans. These observations provide insights into the carcinogenesis of POLE-driven tumors and valuable information for genetic counseling, surveillance, and immunotherapy for patients. SIGNIFICANCE: Two mouse models of polymerase exonuclease deficiency shed light on mechanisms of mutation accumulation and considerations for immunotherapy.See related commentary by Wisdom and Kirsch p. 5459.


Assuntos
DNA Polimerase II , Neoplasias , Animais , DNA Polimerase II/genética , Humanos , Inibidores de Checkpoint Imunológico , Camundongos , Mutação , Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética
18.
Mol Cell ; 78(6): 1166-1177.e6, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32497495

RESUMO

Human tumors with exonuclease domain mutations in the gene encoding DNA polymerase ε (POLE) have incredibly high mutation burdens. These errors arise in four unique mutation signatures occurring in different relative amounts, the etiologies of which remain poorly understood. We used CRISPR-Cas9 to engineer human cell lines expressing POLE tumor variants, with and without mismatch repair (MMR). Whole-exome sequencing of these cells after defined numbers of population doublings permitted analysis of nascent mutation accumulation. Unlike an exonuclease active site mutant that we previously characterized, POLE cancer mutants readily drive signature mutagenesis in the presence of functional MMR. Comparison of cell line and human patient data suggests that the relative abundance of mutation signatures partitions POLE tumors into distinct subgroups dependent on the nature of the POLE allele, its expression level, and MMR status. These results suggest that different POLE mutants have previously unappreciated differences in replication fidelity and mutagenesis.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Alelos , Linhagem Celular Tumoral , Reparo de Erro de Pareamento de DNA/fisiologia , Humanos , Mutagênese/genética , Mutação/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo
19.
iScience ; 23(5): 101117, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32422591

RESUMO

Cooperation between DNA polymerases and DNA sliding clamp proteins is essential for DNA replication and repair. However, it is still challenging to clarify the binding mechanism and the movements of Y-family DNA polymerase IV (DPO4) on the proliferating cell nuclear antigen (PCNA) ring. Here we develop the simulation models of DPO4-PCNA123 and DPO4-PCNA12 complexes and uncover the underlying dynamics of DPO4 during binding and the binding order of the DPO4 domains. Two important intermediate states are found on the free energy surface before reaching the final bound state. Our results suggest that both PCNA3 and DPO4 can influence the PCNA12 planar conformation, whereas the impact of PCNA3 on PCNA12 is more significant than DPO4. These findings provide the crucial information of the conformational dynamics of DPO4 and PCNA, as well as the clue of the underlying mechanism of the cooperation between DPO4 and PCNA during DNA replication.

20.
J Chem Theory Comput ; 16(2): 1319-1332, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31972079

RESUMO

Proteins in vivo endure highly various interactions from the luxuriant surrounding macromolecular cosolutes. Confinement and macromolecular crowding are the two major effects that should be considered while comparing the results of protein dynamics from in vitro to in vivo. However, efforts have been largely focused on single domain protein folding up to now, and the quantifications of the in vivo effects in terms of confinements and crowders on modulating the structure and dynamics as well as the physical understanding of the underlying mechanisms on multidomain protein folding are still challenging. Here we developed a topology-based model to investigate folding of a multidomain Y-family DNA polymerase (DPO4) within spherical confined space and in the presence of repulsive and attractive crowders. We uncovered that the entropic component of the thermodynamic driving force led by confinements and repulsive crowders increases the stability of folded states relative to the folding intermediates and unfolded states, while the enthalpic component of the thermodynamic driving force led by attractive crowders gives rise to the opposite effects with less stability. We found that the shapes of DPO4 conformations influenced by the confinements and the crowders are quite different even when only the entropic component of the thermodynamic driving force is considered. We uncovered that under all in vivo conditions, the folding cooperativity of DPO4 decreases compared to that in bulk. We showed that the loss of folding cooperativity can promote the sequential domain-wise folding, which was widely found in cotranslational multidomain protein folding, and effectively prohibit the backtracking led by topological frustrations during multidomain protein folding processes.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Dobramento de Proteína , Simulação por Computador , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...