Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15733, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735174

RESUMO

This study presents an experimental and finite element analysis of reinforced concrete beams with solid, hollow, prismatic, or non-prismatic sections. In the first part, a total of six beams were tested under four-point monotonic bending. The test matrix was designed to provide a comparison of structural behavior between prismatic solid and hollow section beams, prismatic solid and non-prismatic solid section beams, and prismatic hollow and non-prismatic hollow section beams. The intensity of shear was maximum in the case of prismatic section beams. The inclusion of a tapered section lowered the demand for shear. In the second part, Nonlinear Finite Element Modeling was performed by using ATENA. The adopted modeling strategy resulted in close agreement with experimental crack patterns at ultimate failure. However, the ultimate failure loads predicted by nonlinear modeling were generally higher than their corresponding experimental results. Whereas in the last part, the developed models were further extended to investigate the effect of the strength of concrete and ratio of longitudinal steel bars on the ultimate load-carrying capacity and cracking behavior of the reinforced concrete beams with solid, hollow, prismatic, or non-prismatic sections. The ultimate loads for each beam predicted by the model were found to be in close agreement with experimental results. Nonlinear modeling was further extended to assess the effects of concrete strength and longitudinal reinforcement ratio on failure patterns and ultimate loads. The parametric study involved beams reinforced with glass fiber-reinforced polymer (GFRP) bars against shear and flexural failure. In terms of ultimate load capacities, diagonal cracking, and flexural cracking, beams strengthened with GFRP bars demonstrated comparable performance to the beams strengthened with steel bars.

2.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420574

RESUMO

This study investigated the influence of CFRP composite wrapping techniques on the load-deflection and strain relationships of non-prismatic RC beams. A total of twelve non-prismatic beams with and without openings were tested in the present study. The length of the non-prismatic section was also varied to assess the effect on the behavior and load capacity of non-prismatic beams. The strengthening of beams was performed by using carbon fiber-reinforced polymer (CFRP) composites in the form of individual strips or full wraps. The linear variable differential transducers and strain gauges were installed at the steel bars to observe the load-deflection and strain responses of non-prismatic RC beams, respectively. The cracking behavior of unstrengthened beams was accompanied by excessive flexural and shear cracks. The influence of CFRP strips and full wraps was primarily observed in solid section beams without shear cracks, resulting in enhanced performance. In contrast, hollow section strengthened beams exhibited minor shear cracks alongside the primary flexural cracks within the constant moment region. The absence of shear cracks was reflected in the load-deflection curves of strengthened beams, which demonstrated a ductile behavior. The strengthened beams demonstrated 40% to 70% higher peak loads than control beams, whereas the ultimate deflection was increased up to 524.87% compared to that of the control beams. The improvement in the peak load was more prominent as the length of the non-prismatic section increased. A better improvement in ductility was achieved for the case of CFRP strips in the case of short non-prismatic lengths, whereas the efficiency of CFRP strips was reduced as the length of the non-prismatic section increased. Moreover, the load-strain capacity of CFRP-strengthened non-prismatic RC beams was higher than the control beams.


Assuntos
Plásticos , Polímeros , Fibra de Carbono , Suporte de Carga
3.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35012179

RESUMO

An experimental program was conducted to ascertain the efficiency of Carbon Fiber Reinforced Polymer (CFRP) in enhancing the flexural response of hollow section reinforced concrete (RC) beams. Nine beams were tested under four-point bending in three groups. Beams were categorized to reflect the presence or configuration of the CFRP sheet. Each group consisted of three beams: one with a solid section, one with a square 50×50  mm × mm opening and 1 with 100×100  mm × mm opening. Beams in 1st group were tested in as-built conditions. Beams in the 2nd group were strengthened with a single CFRP sheet bonded to their bottom sides. Configuration of CFRP sheet was altered to U-shape applied to the tension side of 3rd group beams. The inclusion of openings, regardless of their size, did not result in degradation of ultimate load and corresponding deflections. However, cracking loads were found to decline as the opening size increased. Regardless of the opening size and CFRP configuration, ultimate loads of beams increased with the application of CFRP. However, this improvement was limited to the debonding and rupture of CFRP in group 2 and 3 beams, respectively. A comparison in the behavior of group 2 and 3 beams revealed that the application of the U-shape CFRP sheet yielded better flexural performance in comparison with the flat-CFRP sheet bonded to the bottom of beams. In the end, In order to further evaluate the economic and performance benefits of these beams, the cost-benefit analysis was also performed. The analysis showed that the feasibility of the hollow section RC beams is more than the solid section RC beams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA