Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 124(Pt B): 111012, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804657

RESUMO

T cell-based immunotherapy has transformed cancer treatment. Nonetheless, T cell antitumor activity can be inhibited by an immune checkpoint molecule expressed on cancer cells, program death ligand 1 (PD-L1), which interacts with the PD-1 on T cells. We generated αPD-L1 × αCD3 bispecific T-cell engager-armed T cells (BATs) to prevent PD-L1/PD-1 interaction and hence to redirect T cells to kill cancer cells. αPD-L1 × αCD3 bispecific T-cell engagers (BTEs) were produced from Chinese hamster ovary (CHO) cells to arm human primary T cells. Flow cytometry was used to investigate BTE binding to BATs. The cytotoxicity of BATs against PD-L1-expressing breast cancer (BC) cell lines was assessed in 2-dimensional (2D) and 3-dimensional (3D) culture models. The binding stability of BTE on BATs and their efficacy after cryopreservation were also examined. The CHO cell BTE expression yield was 3.34 mg/ml. The binding ability on T cells reached 91.02 ± 4.2 %. BATs specifically lysed PD-L1-expressing BC cells, with 56.4 ± 15.3 % HCC70 cells and 70.67 ± 15.6 % MDA-MB-231 cells lysed at a 10:1 effector-to-target ratio. BATs showed slight, nonsignificant lysis of PD-L1-negative BC cells, MCF-7, and T47D. Moreover, BATs significantly disrupted MDA-MB-231 3D spheroids expressing PD-L1 after 48 and 72 h of coculture. Cryopreserved BATs maintained BTE binding stability, cell viability, and anticancer activity, comparable to fresh BATs. αPD-L1 × αCD3 BATs induced the cytolysis of PD-L1-expressing BC cells in 2D and 3D coculture assays. BATs can be prepared and preserved, facilitating their use and transportation. This study demonstrates the potential of αPD-L1 × αCD3 BATs in treating cancers with positive PD-L1 expression.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Animais , Cricetinae , Humanos , Feminino , Linfócitos T , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1 , Células CHO , Braço , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Cricetulus , Terapia de Imunossupressão , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/metabolismo , Linhagem Celular Tumoral
2.
Cytotherapy ; 25(2): 148-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36396553

RESUMO

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a lethal bile-duct cancer that is difficult to treat by current standard procedures. This drawback has prompted us to develop adoptive T-cell therapy for CCA, which requires an appropriate target antigen for binding of chimeric antigen receptor (CAR) T cells. Mucin 1 (MUC1), an overexpressed protein in CCA cells, is a potential target antigen for the CAR T-cell development. However, MUC1 overexpression also is associated with the upregulation of programmed death-ligand 1 (PD-L1), an immune checkpoint protein that prohibits anti-tumor functions of T cells, probably causing poor overall survival of patients with CCA. METHODS: To overcome this problem, we developed anti-MUC1-CAR T cells containing PD-1-CD28 switch receptor (SR), namely αM.CAR/SR T cells, to target MUC1 and switch on the inhibitory signal of PD-1/PD-L1 interaction to activate CD28 signaling. Our lentiviral construct contains the sequences that encode anti-MUC1-single chain variable fragment, CD137 and CD3ζ, linked with P2A, PD-1 and CD28. RESULTS: Initially, the upregulations of MUC1 and PD-L1 proteins were confirmed in CCA cell lines. αM.CAR and SR were co-expressed in 53.53 ± 13.89% of transduced T cells, mainly CD8+ T cells (85.7 ± 0.75%, P<0.0001) with the effector memory phenotype (59.22 ± 16.31%, P < 0.01). αM.CAR/SR T cells produced high levels of intracellular tumor necrosis factor-α and interferon-γ in response to the activation by CCA cells expressing MUC1, including KKU-055 (27.18 ± 4.38% and 27.33 ± 5.55%, respectively, P < 0.05) and KKU-213A (47.37 ± 12.67% and 54.55 ± 8.66%, respectively, P < 0.01). Remarkably, the cytotoxic function of αM.CAR/SR T cells against KKU-213A cells expressing PD-L1 was significantly enhanced compared with the αM.CAR T cells (70.69 ± 14.38% versus 47.15 ± 8.413%, respectively; P = 0.0301), correlated with increased granzyme B production (60.6 ± 9.89% versus 43.2 ± 8.95%, respectively; P = 0.0402). Moreover, the significantly enhanced disruption of KKU-213A spheroids by αM.CAR/SR T cells (P = 0.0027), compared with αM.CAR T cells, was also observed. CONCLUSION: Taken together, the cytotoxic function of αM.CAR/SR T cells was enhanced over the αM.CAR T cells, which are potential to be further tested for CCA treatment.


Assuntos
Colangiocarcinoma , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/genética , Antígenos CD28/genética , Linhagem Celular Tumoral , Colangiocarcinoma/terapia , Imunoterapia Adotiva/métodos
3.
PLoS One ; 17(3): e0265773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35312724

RESUMO

Cholangiocarcinoma (CCA) is a lethal cancer of bile duct epithelial cells with a high mortality rate and limited therapeutic options. An effective treatment is, therefore, urgently needed to improve treatment outcomes for these patients. To develop a new therapeutic option, we engineered T cells secreting αCD133-αCD3 bispecific T-cell engager and evaluated their antitumor effects against CD133-expressing CCA cells. The cDNA encoding αCD133-αCD3 bispecific T-cell engager (αCD133-αCD3-ENG) was cloned into pCDH lentiviral construct and its expression was tested in Lenti-X 293T cells. T cells from healthy donors were then transduced with engineered lentiviruses to create T cells secreting αCD133-αCD3 engager to evaluate their antitumor activities. The average transduction efficiency into T cells was approximately 60.03±21.65%. In the co-culture system containing T cells secreting αCD133-αCD3 engager (as effector cells) and mWasabi-luciferase-expressing CCA cells (KKU-100 and KKU-213A; as target cells), the effector T cells exhibited significantly higher cytolytic activities against the target CCA cells (49.0±9.76% and 64.10±13.18%, respectively) than those observed against the untransduced T cells (10.97±10.65%; p = 0.0103 and 9.80±11.05%; p = 0.0054) at an effector-to-target ratio of 5:1. In addition, the secreted αCD133-αCD3 engager significantly redirected both transduced T cells and bystander T cells to kill the target CCA cells (up to 73.20±1.68%; p<0.05). Moreover, the transduced and bystander T cells could kill the target CCA spheroids at a rate approximately 5-fold higher than that of the no treatment control condition (p = 0.0011). Our findings demonstrate proof-of-principle that T cells secreting αCD133-αCD3 engager can be an alternative approach to treating CD133-positive CCA, and they pave the way for future in vivo study and clinical trials.


Assuntos
Anticorpos Biespecíficos , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Anticorpos Biespecíficos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Técnicas de Cocultura , Humanos , Linfócitos T/metabolismo
4.
Sci Rep ; 11(1): 6276, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737613

RESUMO

Current treatments for cholangiocarcinoma (CCA) are largely unsuccessful due to late diagnosis at advanced stage, leading to high mortality rate. Consequently, improved therapeutic approaches are urgently needed. Chimeric antigen receptor (CAR) T cell therapy is a newly potential therapy that can recognize specific surface antigen without major histocompatibility complex (MHC) restriction. Mucin 1 (MUC1) is an attractive candidate antigen as it is highly expressed and associated with poor prognosis and survival in CCA. We, therefore, set forth to create the fourth-generation CAR (CAR4) construct containing anti-MUC1-single-chain variable fragment (scFv) and three co-stimulatory domains (CD28, CD137, and CD27) linked to CD3ζ and evaluate anti-MUC1-CAR4 T cells in CCA models. Compared to untransduced T cells, anti-MUC1-CAR4 T cells produced increased levels of TNF-α, IFN-γ and granzyme B when exposed to MUC1-expressing KKU-100 and KKU-213A CCA cells (all p < 0.05). Anti-MUC1-CAR4 T cells demonstrated specific killing activity against KKU-100 (45.88 ± 7.45%, p < 0.05) and KKU-213A cells (66.03 ± 3.14%, p < 0.001) at an effector to target ratio of 5:1, but demonstrated negligible cytolytic activity against immortal cholangiocytes. Furthermore, the anti-MUC1-CAR4 T cells could effectively disrupt KKU-213A spheroids. These activities of anti-MUC1-CAR4 T cells supports the development of this approach as an adoptive T cell therapeutic strategy for CCA.


Assuntos
Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/terapia , Transplante de Células/métodos , Colangiocarcinoma/imunologia , Colangiocarcinoma/terapia , Imunoterapia Adotiva/métodos , Mucina-1/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Técnicas de Cocultura , Citocinas/biossíntese , Células HEK293 , Humanos , Células MCF-7 , Mucina-1/metabolismo , Receptores de Antígenos Quiméricos/genética , Anticorpos de Cadeia Única/imunologia , Esferoides Celulares/imunologia , Transfecção , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
5.
Int Immunopharmacol ; 89(Pt B): 107069, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33242709

RESUMO

Current treatment of cholangiocarcinoma (CCA) - a lethal bile duct cancer - is ineffective because the disease is usually diagnosed at late and advanced stage. Thus, a novel therapeutic modality is urgently required. Fourth-generation chimeric antigen receptor (CAR4) T cells was created to target CD133, a well-known cancer stem cell marker, that is highly expressed and associates with cancer progression. The anti-CD133-CAR4 T cells showed high efficacy against CD133-expressing CCA cells. Tumour cell lysis occurred in a dose- and CD133 antigen-dependent manner, and significantly higher, up to 57.59% ± 9.62 at effector to target ratio of 5:1 in a CCA cell line - KKU-213A cells, compared to mock control (p = 0.008). Similarly, significant IFN-γ (p = 0.011) and TNF-α (p = 0.002) upregulation was observed upon tumour treatment. The effectiveness of our anti-CD133-CAR4 T cells will be beneficial not only for CD133-expressing CCA, but also for other CD133-expressing tumours. This study may guide future in vivo study and clinical trials.


Assuntos
Antígeno AC133/metabolismo , Neoplasias dos Ductos Biliares/terapia , Colangiocarcinoma/terapia , Imunoterapia Adotiva , Células-Tronco Neoplásicas/metabolismo , Anticorpos de Cadeia Única/metabolismo , Linfócitos T/metabolismo , Antígeno AC133/imunologia , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Complexo CD3/genética , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/imunologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Técnicas de Cocultura , Citotoxicidade Imunológica , Humanos , Interferon gama/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Esferoides Celulares , Linfócitos T/imunologia , Linfócitos T/transplante , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...