Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Pathogens ; 13(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38392855

RESUMO

Upon declaration of poliovirus (PV) type 2 eradication in 2015, the World Health Organization (WHO) published PV containment requirements in the Global Action Plan III (GAPIII) for mitigating the risk of a facility-associated release post eradication. In 2018, the 71st World Health Assembly resolution urged member states retaining PV to appoint a National Authority for Containment (NAC), reduce the number of PV facilities, and submit applications for containment certification. The United States (US) NAC was established in 2018 for containment oversight, and two paths to WHO GAPIII containment certification were developed. Facilities retaining PV were identified through national poliovirus containment surveys. The US NAC conducted 27 site visits at 18 facilities (20 laboratories: A/BSL-2 (65%), A/BSL-3 (20%), and storage-only (15%)) to verify the implementation of US NAC's preliminary containment measures. The NAC identified areas for improvement in seven categories: primary containment, decontamination, hand hygiene, security, emergency response, training, and immunization practices. Sixteen facility applications were endorsed to pursue poliovirus-essential facility (PEF) certification, whereas four facilities opted to withdraw during the containment certification process. The US made noteworthy progress in PV containment to enhance biosafety and biosecurity practices at US PV facilities to safeguard the polio eradication effort.

2.
PNAS Nexus ; 2(9): pgad256, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674858

RESUMO

Rubella is a highly contagious viral infection that usually causes a mild disease in children and adults. However, infection during pregnancy can result in a fetal or newborn death or congenital rubella syndrome (CRS), a constellation of permanent birth defects including cataracts, heart defects, and sensorineural deafness. The live-attenuated rubella vaccine has been highly effective, with the Americas declared free of endemic rubella transmission in 2015. However, rubella remains a significant problem worldwide and the leading cause of vaccine-preventable birth defects globally. Thus, elimination of rubella and CRS is a goal of the World Health Organization. No specific therapeutics are approved for the rubella virus. Therefore, we set out to identify whether existing small molecules may be repurposed for use against rubella virus infection. Thus, we performed a high-throughput screen for small molecules active against rubella virus in human respiratory cells and identified two nucleoside analogs, NM107 and AT-527, with potent antiviral activity. Furthermore, we found that combining these nucleoside analogs with inhibitors of host nucleoside biosynthesis had synergistic antiviral activity. These studies open the door to new potential approaches to treat rubella infections.

3.
Vaccine ; 41(11): 1808-1818, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36572604

RESUMO

BACKGROUND: The extent to which vaccinated persons who become infected with SARS-CoV-2 contribute to transmission is unclear. During a SARS-CoV-2 Delta variant outbreak among incarcerated persons with high vaccination rates in a federal prison, we assessed markers of viral shedding in vaccinated and unvaccinated persons. METHODS: Consenting incarcerated persons with confirmed SARS-CoV-2 infection provided mid-turbinate nasal specimens daily for 10 consecutive days and reported symptom data via questionnaire. Real-time reverse transcription-polymerase chain reaction (RT-PCR), viral whole genome sequencing, and viral culture was performed on these nasal specimens. Duration of RT-PCR positivity and viral culture positivity was assessed using survival analysis. RESULTS: A total of 957 specimens were provided by 93 participants, of whom 78 (84 %) were vaccinated and 17 (16 %) were unvaccinated. No significant differences were detected in duration of RT-PCR positivity among vaccinated participants (median: 13 days) versus those unvaccinated (median: 13 days; p = 0.50), or in duration of culture positivity (medians: 5 days and 5 days; p = 0.29). Among vaccinated participants, overall duration of culture positivity was shorter among Moderna vaccine recipients versus Pfizer (p = 0.048) or Janssen (p = 0.003) vaccine recipients. In post-hoc analyses, Moderna vaccine recipients demonstrated significantly shorter duration of culture positivity compared to unvaccinated participants (p = 0.02). When restricted to participants without reported prior infection, the difference between Moderna vaccine recipients and unvaccinated participants was more pronounced (medians: 3 days and 6 days, p = 0.002). CONCLUSIONS: Infectious periods for vaccinated and unvaccinated persons who become infected with SARS-CoV-2 are similar and can be highly variable, though some vaccinated persons are likely infectious for shorter durations. These findings are critically important, especially in congregate settings where viral transmission can lead to large outbreaks. In such settings, clinicians and public health practitioners should consider vaccinated, infected persons to be no less infectious than unvaccinated, infected persons.


Assuntos
COVID-19 , Prisões , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Surtos de Doenças
4.
Pathogens ; 11(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335662

RESUMO

A strong association between rubella virus (RuV) and chronic granulomas, in individuals with inborn errors of immunity, has been recently established. Both the RA27/3 vaccine and wild-type RuV strains were highly sensitive to a broad-spectrum antiviral drug, nitazoxanide (NTZ), in vitro. However, NTZ treatment, used as a salvage therapy, resulted in little or no improvements of RuV-associated cutaneous granulomas in patients. Here, we report investigations of possible causes of treatment failures in two ataxia-telangiectasia patients. Although a reduction in RuV RNA in skin lesions was detected by real-time RT-PCR, live immunodeficiency-related vaccine-derived rubella viruses (iVDRV) were recovered from granulomas, before and after the treatments. Tizoxanide, an active NTZ metabolite, inhibited replications of all iVDRVs in cultured A549 cells, but the 50% and 90% inhibitory concentrations were 10-40 times higher than those for the RA27/3 strain. There were no substantial differences in iVDRV sensitivities, neither before nor after treatments. Analysis of quasispecies in the E1 gene, a suspected NTZ target, showed no effect of NTZ treatments on quasispecies' complexity in lesions. Thus, failures of NTZ therapies were likely due to low sensitivities of iVDRVs to the drug, and not related to the emergence of resistance, following long-term NTZ treatments.

5.
J Clin Microbiol ; 60(1): e0174221, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34705535

RESUMO

Point-of-care antigen tests are an important tool for SARS-CoV-2 detection. Antigen tests are less sensitive than real-time reverse transcriptase PCR (rRT-PCR). Data on the performance of the BinaxNOW antigen test compared to rRT-PCR and viral culture by symptom and known exposure status, timing during disease, or exposure period and demographic variables are limited. During 3 to 17 November 2020, we collected paired upper respiratory swab specimens to test for SARS-CoV-2 by rRT-PCR and Abbott BinaxNOW antigen test at two community testing sites in Pima County, Arizona. We administered a questionnaire to capture symptoms, known exposure status, and previous SARS-CoV-2 test results. Specimens positive by either test were analyzed by viral culture. Previously we showed overall BinaxNOW sensitivity was 52.5%. Here, we showed BinaxNOW sensitivity increased to 65.7% among currently symptomatic individuals reporting a known exposure. BinaxNOW sensitivity was lower among participants with a known exposure and previously symptomatic (32.4%) or never symptomatic (47.1%) within 14 days of testing. Sensitivity was 71.1% in participants within a week of symptom onset. In participants with a known exposure, sensitivity was highest 8 to 10 days postexposure (75%). The positive predictive value for recovery of virus in cell culture was 56.7% for BinaxNOW-positive and 35.4% for rRT-PCR-positive specimens. Result reporting time was 2.5 h for BinaxNOW and 26 h for rRT-PCR. Point-of-care antigen tests have a shorter turnaround time than laboratory-based nucleic acid amplification tests, which allows for more rapid identification of infected individuals. Antigen test sensitivity limitations are important to consider when developing a testing program.


Assuntos
COVID-19 , SARS-CoV-2 , Antígenos Virais , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
6.
MMWR Morb Mortal Wkly Rep ; 70(3): 100-105, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33476316

RESUMO

Rapid antigen tests, such as the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW), offer results more rapidly (approximately 15-30 minutes) and at a lower cost than do highly sensitive nucleic acid amplification tests (NAATs) (1). Rapid antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in symptomatic persons (2), but data are lacking on test performance in asymptomatic persons to inform expanded screening testing to rapidly identify and isolate infected persons (3). To evaluate the performance of the BinaxNOW rapid antigen test, it was used along with real-time reverse transcription-polymerase chain reaction (RT-PCR) testing to analyze 3,419 paired specimens collected from persons aged ≥10 years at two community testing sites in Pima County, Arizona, during November 3-17, 2020. Viral culture was performed on 274 of 303 residual real-time RT-PCR specimens with positive results by either test (29 were not available for culture). Compared with real-time RT-PCR testing, the BinaxNOW antigen test had a sensitivity of 64.2% for specimens from symptomatic persons and 35.8% for specimens from asymptomatic persons, with near 100% specificity in specimens from both groups. Virus was cultured from 96 of 274 (35.0%) specimens, including 85 (57.8%) of 147 with concordant antigen and real-time RT-PCR positive results, 11 (8.9%) of 124 with false-negative antigen test results, and none of three with false-positive antigen test results. Among specimens positive for viral culture, sensitivity was 92.6% for symptomatic and 78.6% for asymptomatic individuals. When the pretest probability for receiving positive test results for SARS-CoV-2 is elevated (e.g., in symptomatic persons or in persons with a known COVID-19 exposure), a negative antigen test result should be confirmed by NAAT (1). Despite a lower sensitivity to detect infection, rapid antigen tests can be an important tool for screening because of their quick turnaround time, lower costs and resource needs, high specificity, and high positive predictive value (PPV) in settings of high pretest probability. The faster turnaround time of the antigen test can help limit transmission by more rapidly identifying infectious persons for isolation, particularly when used as a component of serial testing strategies.


Assuntos
Teste Sorológico para COVID-19 , COVID-19/diagnóstico , Serviços de Saúde Comunitária , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Arizona/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Fatores de Tempo , Adulto Jovem
7.
Antiviral Res ; 180: 104849, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32553844

RESUMO

During the last decade multiple mumps outbreaks have occurred in the U.S. despite high two dose MMR coverage with most cases detected among two dose MMR vaccine recipients. Waning immunity, the evolution of wild-type virus strains, and settings with intense exposure have contributed to the resurgence of mumps. Typically, mumps virus infections resolve without serious clinical sequelae; however, serious complications may occur among unvaccinated or severely immunocompromised individuals. Favipiravir (T-705) has been shown to have in vitro anti-viral activity against a broad range of positive and negative strand RNA viruses. Here, we demonstrate that T-705 inhibits the growth of wildtype and vaccine strains of mumps virus in vitro at low micro-molar concentrations (EC50 8-10µM). We did not observe the development of resistance after five subsequent passages at low concentrations of drug. Both viral RNA and protein synthesis were selectively reduced compared to host mRNA and protein synthesis. Antiviral treatment options for mumps virus infection may be valuable, especially for areas with a high disease burden or for cases with severe complications. These results presented here suggest that further studies are warranted.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Vírus da Caxumba/efeitos dos fármacos , Pirazinas/farmacologia , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Chlorocebus aethiops , Humanos , RNA Viral/antagonistas & inibidores , Células Vero
8.
J Med Virol ; 92(3): 279-287, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31598987

RESUMO

Rubella virus causes a mild disease; however, infection during the first trimester of pregnancy may lead to congenital rubella syndrome (CRS) in over 80% of affected pregnancies. Vaccination is recommended and has been shown to effectively reduce CRS incidence. Uganda plans to introduce routine rubella vaccination in 2019. The World Health Organization recommends assessing the disease burden and obtaining the baseline molecular virological data before vaccine introduction. Sera collected during case-based measles surveillance from January 2005 to July 2018 were tested for rubella immunoglobulin M (IgM) antibodies. Sera from confirmed rubella outbreaks from January 2012 to August 2017 were screened using real-time reverse-transcription polymerase chain reaction (RT-PCR); for positive samples, a region within the E1 glycoprotein coding region was amplified and sequenced. Of the 23 196 suspected measles cases serologically tested in parallel for measles and rubella, 5334 (23%) were rubella IgM-positive of which 2710 (50.8%) cases were females with 2609 (96.3%) below 15 years of age. Rubella IgM-positive cases were distributed throughout the country and the highest number was detected in April, August, and November. Eighteen (18%) of the 100 sera screened were real-time RT-PCR-positive of which eight (44.4%) were successfully sequenced and genotypes 1G and 2B were identified. This study reports on the seroprevalence and molecular epidemiology of rubella. Increased knowledge of former and current rubella viruses circulating in Uganda will enhance efforts to monitor the impact of vaccination as Uganda moves toward control and elimination of rubella and CRS.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Rubéola/classificação , Rubéola (Sarampo Alemão)/epidemiologia , Rubéola (Sarampo Alemão)/virologia , Adolescente , Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Surtos de Doenças/estatística & dados numéricos , Feminino , Genótipo , Humanos , Imunoglobulina M/sangue , Incidência , Masculino , Sarampo/epidemiologia , Filogenia , Gravidez , Vacina contra Rubéola/imunologia , Uganda/epidemiologia
9.
PLoS Pathog ; 15(10): e1008080, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658304

RESUMO

Rubella viruses (RV) have been found in an association with granulomas in children with primary immune deficiencies (PID). Here, we report the recovery and characterization of infectious immunodeficiency-related vaccine-derived rubella viruses (iVDRV) from diagnostic skin biopsies of four patients. Sequence evolution within PID hosts was studied by comparison of the complete genomic sequences of the iVDRVs with the genome of the vaccine virus RA27/3. The degree of divergence of each iVDRV correlated with the duration of persistence indicating continuous intrahost evolution. The evolution rates for synonymous and nonsynonymous substitutions were estimated to be 5.7 x 10-3 subs/site/year and 8.9 x 10-4 subs/site/year, respectively. Mutational spectra and signatures indicated a major role for APOBEC cytidine deaminases and a secondary role for ADAR adenosine deaminases in generating diversity of iVDRVs. The distributions of mutations across the genes and 3D hotspots for amino acid substitutions in the E1 glycoprotein identified regions that may be under positive selective pressure. Quasispecies diversity was higher in granulomas than in recovered infectious iVDRVs. Growth properties of iVDRVs were assessed in WI-38 fibroblast cultures. None of the iVDRV isolates showed complete reversion to wild type phenotype but the replicative and persistence characteristics of iVDRVs were different from those of the RA27/3 vaccine strain, making predictions of iVDRV transmissibility and teratogenicity difficult. However, detection of iVDRV RNA in nasopharyngeal specimen and poor neutralization of some iVDRV strains by sera from vaccinated persons suggests possible public health risks associated with iVDRV carriers. Detection of IgM antibody to RV in sera of two out of three patients may be a marker of virus persistence, potentially useful for identifying patients with iVDRV before development of lesions. Studies of the evolutionary dynamics of iVDRV during persistence will contribute to development of infection control strategies and antiviral therapies.


Assuntos
Granuloma/virologia , Vacina contra Sarampo-Caxumba-Rubéola/efeitos adversos , Doenças da Imunodeficiência Primária/imunologia , Vírus da Rubéola/genética , Vírus da Rubéola/isolamento & purificação , Desaminases APOBEC/metabolismo , Adenosina Desaminase/metabolismo , Adolescente , Animais , Anticorpos Antivirais/sangue , Biópsia , Linhagem Celular , Criança , Chlorocebus aethiops , Genoma Viral/genética , Humanos , Imunoglobulina M/sangue , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Proteínas de Ligação a RNA/metabolismo , Pele/virologia , Células Vero , Proteínas do Envelope Viral/genética , Eliminação de Partículas Virais/genética
10.
PLoS One ; 9(11): e112462, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383873

RESUMO

Influenza virus exhibits two morphologies - spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1) [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Aviária/virologia , Neuraminidase/metabolismo , Proteínas da Matriz Viral/genética , Proteínas Virais/metabolismo , Animais , Embrião de Galinha , Galinhas , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Mutação Puntual , Vírion/metabolismo
11.
J Virol ; 88(13): 7569-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760887

RESUMO

UNLABELLED: Position 41 of the influenza A virus matrix protein encodes a highly conserved alanine in human and avian lineages. Nonetheless, strains of the Eurasian avian-like swine (Easw) lineage contain a change at this position: position 41 of A/swine/Spain/53207/04 (H1N1) (SPN04) encodes a proline. To assess the impact of this naturally occurring polymorphism on viral fitness, we utilized reverse genetics to produce recombinant viruses encoding wild-type M1 41P (rSPN04-P) and consensus 41A (rSPN04-A) residues. Relative to rSPN04-A, rSPN04-P virus displayed reduced growth in vitro. In the guinea pig model, rSPN04-P was transmitted to fewer contact animals than rSPN04-A and failed to infect guinea pigs that received a low-dose inoculum. Moreover, the P41A change altered virion morphology, reducing the number and length of filamentous virions, as well as reducing the neuraminidase activity of virions. The lab-adapted human isolate, A/PR/8/34 (H1N1) (PR8), is nontransmissible in the guinea pig model, making it a useful background in which to identify certain viral factors that enhance transmissibility. We assessed transmission in the context of single-, double-, and triple-reassortant viruses between PR8 and SPN04; PR8/SPN04 M, PR8/SPN04 M+NA, and PR8/SPN04 M+NA+HA, encoding either matrix 41 A or P, were generated. In each case, the virus possessing 41P transmitted less well than the corresponding 41A-encoding virus. In summary, we have identified a naturally occurring mutation in the influenza A virus matrix protein that impacts transmission efficiency and can alter virion morphology and neuraminidase activity. IMPORTANCE: We have developed a practical model for examining the genetics underlying transmissibility of the Eurasian avian-like swine lineage viruses, which contributed M and NA segments to the 2009 pandemic strain. Here, we use our system to investigate the impact on viral fitness of a naturally occurring polymorphism at matrix (M1) position 41 in an Easw isolate. Position 41 has been implicated previously in adaptation to laboratory substrates and to mice. Here we show that the polymorphism at M1 41 has a limited effect on growth in vitro but changes the morphology of the virus and impacts growth and transmission in the guinea pig model.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/fisiologia , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Vírion/fisiologia , Animais , Células Cultivadas , Feminino , Cobaias , Humanos , Immunoblotting , Camundongos , Mutação/genética , Neuraminidase/genética , Infecções por Orthomyxoviridae/virologia , Suínos , Proteínas da Matriz Viral/genética , Proteínas Virais/genética
12.
J Gen Virol ; 93(Pt 4): 807-816, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22238231

RESUMO

A proline-rich region (PRR) within the rubella virus (RUBV) P150 replicase protein that contains three SH3 domain-binding motifs (PxxPxR) was investigated for its ability to bind cell proteins. Pull-down experiments using a glutathione S-transferase-PRR fusion revealed PxxPxR motif-specific binding with human p32 protein (gC1qR), which could be mediated by either of the first two motifs. This finding was of interest because p32 protein also binds to the RUBV capsid protein. Binding of p32 to P150 was confirmed and was abolished by mutation of the first two motifs. When mutations in the first two motifs were introduced into a RUBV cDNA infectious clone, virus replication was significantly impaired. However, virus RNA synthesis was found to be unaffected, and subsequent immunofluorescence analysis of RUBV-infected cells revealed co-localization of p32 and P150 but little overlap of p32 with RNA replication complexes, indicating that p32 does not participate directly in virus RNA synthesis. Thus, the role of p32 in RUBV replication remains unresolved.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Mitocondriais/metabolismo , Domínios Proteicos Ricos em Prolina/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Vírus da Rubéola/fisiologia , Animais , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/fisiologia , Chlorocebus aethiops , Humanos , Domínios Proteicos Ricos em Prolina/genética , Ligação Proteica , RNA Viral/metabolismo , RNA Viral/fisiologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/fisiologia , Vírus da Rubéola/genética , Vírus da Rubéola/metabolismo , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia , Domínios de Homologia de src/fisiologia
13.
Virol J ; 8: 245, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21595991

RESUMO

BACKGROUND: Proteolytic processing is a common mechanism among plus strand RNA viruses and the replicases of all plus strand RNA viruses of animals thus far characterized undergo such processing. The replicase proteins of hepatitis E virus (HEV) are encoded by ORF1. A previous report published by our group 1 provided data that processing potentially occurred when ORF1 (Burma strain; genotype 1) was expressed using a vaccinia virus-based expression system. FINDINGS: To further test for processing and to rule out artifacts associated with the expression system, ORF1 was re-expressed using a plasmid-based expression vector with the result that the previous processing profile could not be confirmed. When ORF1 from an HEV infectious cDNA clone (US swine strain; genotype 3) was expressed using the plasmid-based system, the only species detected was the 185 kDa precursor of ORF1. A putative papain-like cysteine protease 2 had been predicted within ORF1 using the original HEV genomic sequence. However, analysis of subsequent ORF1 sequences from a large number of HEV isolates reveals that this protease motif is not conserved. CONCLUSIONS: The expressed HEV ORF1 gene product does not undergo proteolytic processing, indicating that the replicase precursor of HEV is potentially unique in this regard.


Assuntos
Vírus da Hepatite E/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional
14.
PLoS One ; 6(4): e18272, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21494670

RESUMO

BACKGROUND: Xenotropic murine leukemia virus-related virus (XMRV) was recently discovered to be the first human gammaretrovirus that is associated with chronic fatigue syndrome and prostate cancer (PC). Although a mechanism for XMRV carcinogenesis is yet to be established, this virus belongs to the family of gammaretroviruses well known for their ability to induce cancer in the infected hosts. Since its original identification XMRV has been detected in several independent investigations; however, at this time significant controversy remains regarding reports of XMRV detection/prevalence in other cohorts and cell type/tissue distribution. The potential risk of human infection, coupled with the lack of knowledge about the basic biology of XMRV, warrants further research, including investigation of adaptive immune responses. To study immunogenicity in vivo, we vaccinated mice with a combination of recombinant vectors expressing codon-optimized sequences of XMRV gag and env genes and virus-like particles (VLP) that had the size and morphology of live infectious XMRV. RESULTS: Immunization elicited Env-specific binding and neutralizing antibodies (NAb) against XMRV in mice. The peak titers for ELISA-binding antibodies and NAb were 1:1024 and 1:464, respectively; however, high ELISA-binding and NAb titers were not sustained and persisted for less than three weeks after immunizations. CONCLUSIONS: Vaccine-induced XMRV Env antibody titers were transiently high, but their duration was short. The relatively rapid diminution in antibody levels may in part explain the differing prevalences reported for XMRV in various prostate cancer and chronic fatigue syndrome cohorts. The low level of immunogenicity observed in the present study may be characteristic of a natural XMRV infection in humans.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Modelos Animais , Proteínas do Envelope Viral/imunologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Especificidade de Anticorpos/imunologia , Linhagem Celular , Vetores Genéticos/genética , Humanos , Soros Imunes/imunologia , Imunização , Camundongos , Testes de Neutralização , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/metabolismo , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/ultraestrutura
15.
J Virol ; 85(9): 4547-57, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325416

RESUMO

Xenotropic murine leukemia-related virus (XMRV) was identified in association with human prostate cancer and chronic fatigue syndrome. To examine the infection potential, kinetics, and tissue distribution of XMRV in an animal model, we inoculated five macaques with XMRV intravenously. XMRV established a persistent, chronic disseminated infection, with low transient viremia and provirus in blood lymphocytes during acute infection. Although undetectable in blood after about a month, XMRV viremia was reactivated at 9 months, confirming the chronicity of the infection. Furthermore, XMRV Gag was detected in tissues throughout, with wide dissemination throughout the period of monitoring. Surprisingly, XMRV infection showed organ-specific cell tropism, infecting CD4 T cells in lymphoid organs including the gastrointestinal lamina propria, alveolar macrophages in lung, and epithelial/interstitial cells in other organs, including the reproductive tract. Of note, in spite of the intravenous inoculation, extensive XMRV replication was noted in prostate during acute but not chronic infection even though infected cells were still detectable by fluorescence in situ hybridization (FISH) in prostate at 5 and 9 months postinfection. Marked lymphocyte activation occurred immediately postinfection, but antigen-specific cellular responses were undetectable. Antibody responses were elicited and boosted upon reexposure, but titers decreased rapidly, suggesting low antigen stimulation over time. Our findings establish a nonhuman primate model to study XMRV replication/dissemination, transmission, pathogenesis, immune responses, and potential future therapies.


Assuntos
Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Macaca mulatta/virologia , Doenças dos Primatas/virologia , Infecções por Retroviridae/virologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/imunologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/patogenicidade , Animais , Linfócitos T CD4-Positivos/virologia , Doença Crônica , Células Epiteliais/virologia , Humanos , Linfócitos/virologia , Macrófagos/virologia , Masculino , Doenças dos Primatas/imunologia , Doenças dos Primatas/patologia , Provírus/isolamento & purificação , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/patologia , Tropismo Viral , Viremia , Ativação Viral , Latência Viral
16.
Adv Virol ; 2011: 965689, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22312360

RESUMO

Although XMRV dissemination in humans is a matter of debate, the prostate of select patients seem to harbor XMRV, which raises questions about its potential route of transmission. We established a model of infection in rhesus macaques inoculated with XMRV. In spite of the intravenous inoculation, all infected macaques exhibited readily detectable XMRV signal in the reproductive tract of all 4 males and 1 female during both acute and chronic infection stages. XMRV showed explosive growth in the acini of prostate during acute but not chronic infection. In seminal vesicles, epididymis, and testes, XMRV protein production was detected throughout infection in interstitial or epithelial cells. In the female monkey, epithelial cells in the cervix and vagina were also positive for XMRV gag. The ready detection of XMRV in the reproductive tract of male and female macaques infected intravenously suggests the potential for sexual transmission for XMRV.

17.
J Virol ; 84(13): 6288-96, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20410264

RESUMO

The newly identified retrovirus-the xenotropic murine leukemia virus-related virus (XMRV)-has recently been shown to be strongly associated with familial prostate cancer in humans (A. Urisman et al., PLoS Pathog. 2:e25, 2006). While that study showed evidence of XMRV infection exclusively in the prostatic stromal fibroblasts, a recent study found XMRV protein antigens mainly in malignant prostate epithelial cells (R. Schlaberg et al., Proc. Natl. Acad. Sci. U. S. A. 106:16351-16356, 2009). To help elucidate the mechanisms behind XMRV infection, we show that prostatic fibroblast cells express Xpr1, a known receptor of XMRV, but its expression is absent in other cell lines of the prostate (i.e., epithelial and stromal smooth muscle cells). We also show that certain amino acid residues located within the predicted extracellular loop (ECL3 and ECL4) sequences of Xpr1 are required for efficient XMRV entry. Although we found strong evidence to support XMRV infection of prostatic fibroblast cell lines via Xpr1, we learned that XMRV was indeed capable of infecting cells that did not necessarily express Xpr1, such as those of the prostatic epithelial and smooth muscle origins. Further studies suggest that the expression of Xpr1 and certain genotypes of the RNASEL gene, which could restrict XMRV infection, may play important roles in defining XMRV tropisms in certain cell types. Collectively, our data reveal important cellular determinants required for XMRV entry into different human prostate cells in vitro, which may provide important insights into the possible role of XMRV as an etiologic agent in human prostate cancer.


Assuntos
Endorribonucleases/metabolismo , Gammaretrovirus/fisiologia , Interações Hospedeiro-Patógeno , Próstata/virologia , Neoplasias da Próstata/virologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Linhagem Celular , Células Cultivadas , Endorribonucleases/genética , Células Epiteliais/virologia , Fibroblastos/virologia , Humanos , Vírus da Leucemia Murina , Masculino , Miócitos de Músculo Liso/virologia , Receptores Acoplados a Proteínas G/genética , Receptores Virais/genética , Tropismo Viral , Receptor do Retrovírus Politrópico e Xenotrópico
18.
Urology ; 75(4): 755-61, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20371060

RESUMO

OBJECTIVES: To develop a serum-based assay to detect neutralizing antibodies to the xenotropic murine leukemia virus-related virus (XMRV) retrovirus and to use this assay with polymerase chain reaction and fluorescence in situ hybridization to identify patients with prostate cancer previously exposed to XMRV infection and those who carry XMRV viral sequences in their prostate. METHODS: Patients who had undergone radical prostatectomy were enrolled, and biologic specimens were obtained at surgery. The patients were genotyped for the R462Q RNASEL variant using a TaqMan genotyping assay on DNA from the peripheral blood. A serum assay that detects XMRV neutralizing antibodies was developed and used to determine which patients had serologic evidence of previous infection with XMRV virus. Some of these patients were also tested for the presence of XMRV nucleotide sequences in their prostate using polymerase chain reaction and fluorescence in situ hybridization analysis. RESULTS: At a serum dilution of 1:150, our assay detected 11 (27.5%) of 40 patients with XMRV neutralizing antibodies, including 8 (40%) of 20 with the RNASEL genotype QQ and 3 (15%) of 20 with either the RQ or RR genotype. These results were in complete concordance with 2 other assays (polymerase chain reaction and fluorescence in situ hybridization), which were designed to detect XMRV infection. CONCLUSIONS: XMRV infects some patients with prostate cancer. Neutralizing antibodies against XMRV correlated with 2 independent methods of detecting the virus in the prostate. The antibody response suggests that with clinical serologic assay development, it might be possible to screen patients for XMRV infection. The cases presented in the present report provided biologic samples that can be used for the development of a clinically relevant assay.


Assuntos
Anticorpos Neutralizantes/sangue , Hibridização in Situ Fluorescente , Vírus da Leucemia Murina/imunologia , Vírus da Leucemia Murina/isolamento & purificação , Reação em Cadeia da Polimerase , Neoplasias da Próstata/complicações , Neoplasias da Próstata/virologia , Infecções por Retroviridae/complicações , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/virologia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Testes Sorológicos
19.
J Biol Chem ; 285(12): 8855-68, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20086014

RESUMO

The rubella virus (RUBV) nonstructural (NS) protease domain, a Ca(2+)- and Zn(2+)-binding papain-like cysteine protease domain within the nonstructural replicase polyprotein precursor, is responsible for the self-cleavage of the precursor into two mature products, P150 and P90, that compose the replication complex that mediates viral RNA replication; the NS protease resides at the C terminus of P150. Here we report the Ca(2+)-dependent, stoichiometric association of calmodulin (CaM) with the RUBV NS protease. Co-immunoprecipitation and pulldown assays coupled with site-directed mutagenesis demonstrated that both the P150 protein and a 110-residue minidomain within NS protease interacted directly with Ca(2+)/CaM. The specific interaction was mapped to a putative CaM-binding domain. A 32-mer peptide (residues 1152-1183, denoted as RUBpep) containing the putative CaM-binding domain was used to investigate the association of RUBV NS protease with CaM or its N- and C-terminal subdomains. We found that RUBpep bound to Ca(2+)/CaM with a dissociation constant of 100-300 nm. The C-terminal subdomain of CaM preferentially bound to RUBpep with an affinity 12.5-fold stronger than the N-terminal subdomain. Fluorescence, circular dichroism and NMR spectroscopic studies revealed a "wrapping around" mode of interaction between RUBpep and Ca(2+)/CaM with substantially more helical structure in RUBpep and a global structural change in CaM upon complex formation. Using a site-directed mutagenesis approach, we further demonstrated that association of CaM with the CaM-binding domain in the RUBV NS protease was necessary for NS protease activity and infectivity.


Assuntos
Cálcio/química , Calmodulina/química , Vírus da Rubéola/enzimologia , Proteínas não Estruturais Virais/química , Animais , Sítios de Ligação , Chlorocebus aethiops , Cisteína Proteases/química , Espectroscopia de Ressonância Magnética/métodos , Mutagênese Sítio-Dirigida , Peptídeos/química , Estrutura Terciária de Proteína , Espectrometria de Fluorescência/métodos , Células Vero , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...