Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(41): e2205874119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191186

RESUMO

ATB[Formula: see text] (SLC6A14) is a member of the amino acid transporter branch of the SLC6 family along with GlyT1 (SLC6A9) and GlyT2 (SLC6A5), two glycine-specific transporters coupled to 2:1 and 3:1 Na[Formula: see text]:Cl[Formula: see text], respectively. In contrast, ATB[Formula: see text] exhibits broad substrate specificity for all neutral and cationic amino acids, and its ionic coupling remains unsettled. Using the reversal potential slope method, we demonstrate a 3:1:1 Na[Formula: see text]:Cl[Formula: see text]:Gly stoichiometry for ATB[Formula: see text] that is consistent with its 2.1 e/Gly charge coupling. Like GlyT2, ATB[Formula: see text] behaves as a unidirectional transporter with virtually no glycine efflux at negative potentials after uptake, except by heteroexchange as remarkably shown by leucine activation of NMDARs in Xenopus oocytes coexpressing both membrane proteins. Analysis and computational modeling of the charge movement of ATB[Formula: see text] reveal a higher affinity for sodium in the absence of substrate than GlyT2 and a gating mechanism that locks Na[Formula: see text] into the apo-transporter at depolarized potentials. A 3:1 Na[Formula: see text]:Cl[Formula: see text] stoichiometry justifies the concentrative transport properties of ATB[Formula: see text] and explains its trophic role in tumor growth, while rationalizing its phylogenetic proximity to GlyT2 despite their extreme divergence in specificity.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Sódio , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Íons/metabolismo , Leucina , Filogenia , Sódio/metabolismo
2.
Front Cell Neurosci ; 16: 1060189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687523

RESUMO

Neurotransmitter content is deemed the most basic defining criterion for neuronal classes, contrasting with the intercellular heterogeneity of many other molecular and functional features. Here we show, in the adult mouse brain, that neurotransmitter content variegation within a neuronal class is a component of its functional heterogeneity. Golgi cells (GoCs), the well-defined class of cerebellar interneurons inhibiting granule cells (GrCs), contain cytosolic glycine, accumulated by the neuronal transporter GlyT2, and GABA in various proportions. By performing acute manipulations of cytosolic GABA and glycine supply, we find that competition of glycine with GABA reduces the charge of IPSC evoked in GrCs and, more specifically, the amplitude of a slow component of the IPSC decay. We then pair GrCs recordings with optogenetic stimulations of single GoCs, which preserve the intracellular transmitter mixed content. We show that the strength and decay kinetics of GrCs IPSCs, which are entirely mediated by GABAA receptors, are negatively correlated to the presynaptic expression of GlyT2 by GoCs. We isolate a slow spillover component of GrCs inhibition that is also affected by the expression of GlyT2, leading to a 56% decrease in relative charge. Our results support the hypothesis that presynaptic loading of glycine negatively impacts the GABAergic transmission in mixed interneurons, most likely through a competition for vesicular filling. We discuss how the heterogeneity of neurotransmitter supply within mixed interneurons like the GoC class may provide a presynaptic mechanism to tune the gain of microcircuits such as the granular layer, thereby expanding the realm of their possible dynamic behaviors.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30524262

RESUMO

The corelease of several neurotransmitters from a single synaptic vesicle has been observed at many central synapses. Nevertheless, the signaling synergy offered by cotransmission and the mechanisms that maintain the optimal release and detection of neurotransmitters at mixed synapses remain poorly understood, thus limiting our ability to interpret changes in synaptic signaling and identify molecules important for plasticity. In the brainstem and spinal cord, GABA and glycine cotransmission is facilitated by a shared vesicular transporter VIAAT (also named VGAT), and occurs at many immature inhibitory synapses. As sensory and motor networks mature, GABA/glycine cotransmission is generally replaced by either pure glycinergic or GABAergic transmission, and the functional role for the continued corelease of GABA and glycine is unclear. Whether or not, and how, the GABA/glycine content is balanced in VIAAT-expressing vesicles from the same terminal, and how loading variability effects the strength of inhibitory transmission is not known. Here, we use a combination of loose-patch (LP) and whole-cell (WC) electrophysiology in cultured spinal neurons of GlyT2:eGFP mice to sample miniature inhibitory post synaptic currents (mIPSCs) that originate from individual GABA/glycine co-releasing synapses and develop a modeling approach to illustrate the gradual change in mIPSC phenotypes as glycine replaces GABA in vesicles. As a consistent GABA/glycine balance is predicted if VIAAT has access to both amino-acids, we test whether vesicle exocytosis from a single terminal evokes a homogeneous population of mixed mIPSCs. We recorded mIPSCs from 18 individual synapses and detected glycine-only mIPSCs in 4/18 synapses sampled. The rest (14/18) were co-releasing synapses that had a significant proportion of mixed GABA/glycine mIPSCs with a characteristic biphasic decay. The majority (9/14) of co-releasing synapses did not have a homogenous phenotype, but instead signaled with a combination of mixed and pure mIPSCs, suggesting that there is variability in the loading and/or storage of GABA and glycine at the level of individual vesicles. Our modeling predicts that when glycine replaces GABA in synaptic vesicles, the redistribution between the peak amplitude and charge transfer of mIPSCs acts to maintain the strength of inhibition while increasing the temporal precision of signaling.

4.
Neuron ; 80(1): 143-58, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24094108

RESUMO

Sustained synaptic transmission requires vesicle recycling and refilling with transmitter, two processes considered to proceed independently. Contrary to this assumption, we show here that depletion of cytosolic transmitter at GABAergic synapses reversibly reduces the number of recycling vesicles. Using paired recordings in hippocampal cultures, we show that repetitive activity causes two phases of reduction of the postsynaptic response. The first involves the classical depletion of the readily releasable and recycling pools, while the second reflects impairment of vesicle filling as GABA is consumed, since it can only be reversed by uptake of GABA or its precursors, glutamate or glutamine. Surprisingly, this second phase is associated with reduced quantal release, a faster depression rate and lower FM5-95 labeling, suggesting that the size of the cycling vesicular pool is regulated by cytosolic transmitter availability. Regulation of vesicular cycling may represent a general mechanism of presynaptic plasticity, matching synaptic release to transmitter supply.


Assuntos
Citosol/metabolismo , Hipocampo/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Exocitose/fisiologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia
5.
J Biol Chem ; 287(34): 28975-85, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22700964

RESUMO

Hereditary hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, leading to hypertonia and apnea episodes. Missense, nonsense, frameshift, splice site mutations, and large deletions in the human glycine receptor α1 subunit gene (GLRA1) are the major known cause of this disorder. However, mutations are also found in the genes encoding the glycine receptor ß subunit (GLRB) and the presynaptic Na(+)/Cl(-)-dependent glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of SLC6A5 in 93 new unrelated human hyperekplexia patients revealed 20 sequence variants in 17 index cases presenting with homozygous or compound heterozygous recessive inheritance. Five apparently unrelated cases had the truncating mutation R439X. Genotype-phenotype analysis revealed a high rate of neonatal apneas and learning difficulties associated with SLC6A5 mutations. From the 20 SLC6A5 sequence variants, we investigated glycine uptake for 16 novel mutations, confirming that all were defective in glycine transport. Although the most common mechanism of disrupting GlyT2 function is protein truncation, new pathogenic mechanisms included splice site mutations and missense mutations affecting residues implicated in Cl(-) binding, conformational changes mediated by extracellular loop 4, and cation-π interactions. Detailed electrophysiology of mutation A275T revealed that this substitution results in a voltage-sensitive decrease in glycine transport caused by lower Na(+) affinity. This study firmly establishes the combination of missense, nonsense, frameshift, and splice site mutations in the GlyT2 gene as the second major cause of startle disease.


Assuntos
Doenças Genéticas Inatas , Proteínas da Membrana Plasmática de Transporte de Glicina , Glicina/metabolismo , Mutação , Proteínas do Tecido Nervoso , Doenças Neurodegenerativas , Animais , Análise Mutacional de DNA , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Heterozigoto , Homozigoto , Humanos , Transporte de Íons/genética , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Estrutura Terciária de Proteína , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 109(5): E210-7, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22232659

RESUMO

Secondary active transporters use electrochemical gradients provided by primary ion pumps to translocate metabolites or drugs "uphill" across membranes. Here we report the ion-coupling mechanism of cystinosin, an unusual eukaryotic, proton-driven transporter distantly related to the proton pump bacteriorhodopsin. In humans, cystinosin exports the proteolysis-derived dimeric amino acid cystine from lysosomes and is impaired in cystinosis. Using voltage-dependence analysis of steady-state and transient currents elicited by cystine and neutralization-scanning mutagenesis of conserved protonatable residues, we show that cystine binding is coupled to protonation of a clinically relevant aspartate buried in the membrane. Deuterium isotope substitution experiments are consistent with an access of this aspartate from the lysosomal lumen through a deep proton channel. This aspartate lies in one of the two PQ-loop motifs shared by cystinosin with a set of eukaryotic membrane proteins of unknown function and is conserved in about half of them, thus suggesting that other PQ-loop proteins may translocate protons.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Lisossomos/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Mutagênese , Prótons , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Front Mol Neurosci ; 1: 1, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18946534

RESUMO

Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle reflex, known as hyperekplexia (OMIM 149400). This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and non-sense mutations in the glycine receptor (GlyR) alpha1 subunit gene (GLRA1) on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR beta subunit (GLRB) and the GlyR clustering proteins gephyrin (GPNH) and collybistin (ARHGEF9). Recent studies of the Na(+)/Cl(-)-dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899). These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.

8.
J Neurosci ; 28(39): 9755-68, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18815261

RESUMO

At inhibitory synapses, glycine and GABA are accumulated into synaptic vesicles by the same vesicular transporter VGAT/VIAAT (vesicular GABA transporter/vesicular inhibitory amino acid transporter), enabling a continuum of glycine, GABA, and mixed phenotypes. Many fundamental aspects of the presynaptic contribution to the inhibitory phenotypes remain unclear. The neuronal transporter GlyT2 is one of the critical presynaptic factors, because glycinergic transmission is impaired in knock-out GlyT2(-/-) mice and mutations in the human GlyT2 gene slc6a5 are sufficient to cause hyperekplexia. Here, we establish that GlyT2-mediated uptake is directly coupled to the accumulation of glycine into recycling synaptic vesicles using cultured spinal cord neurons derived from GlyT2-enhanced green fluorescent protein transgenic mice. Membrane expression of GlyT2 was confirmed by recording glycine-evoked transporter current. We show that GlyT2 inhibition induces a switch from a predominantly glycine to a predominantly GABA phenotype. This effect was mediated by a reduction of glycinergic quantal size after cytosolic depletion of glycine and was entirely reversed by glycine resupply, illustrating that the filling of empty synaptic vesicles is tightly coupled to GlyT2-mediated uptake. Interestingly, high-frequency trains of stimuli elicit two phases of vesicle release with distinct kinetic requirements for glycine refilling. Thus, our results demonstrate the central role played by GlyT2 in determining inhibitory phenotype and therefore in the physiology and pathology of inhibitory circuits.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Medula Espinal/citologia , Vesículas Sinápticas/metabolismo , Animais , Benzamidas/farmacologia , Técnicas de Cultura de Células , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Glicina/metabolismo , Glicina/farmacologia , Glicinérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas de Fluorescência Verde/genética , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dinâmica não Linear , Técnicas de Patch-Clamp/métodos , Piridazinas/farmacologia , Estricnina/farmacologia , Fatores de Tempo
9.
J Neurosci ; 27(23): 6273-81, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17554001

RESUMO

The mechanisms that specify the vesicular phenotype of inhibitory interneurons in vertebrates are poorly understood because the two main inhibitory transmitters, glycine and GABA, share the same vesicular inhibitory amino acid transporter (VIAAT) and are both present in neurons during postnatal development. We have expressed VIAAT and the plasmalemmal transporters for glycine and GABA in a neuroendocrine cell line and measured the quantal release of glycine and GABA using a novel double-sniffer patch-clamp technique. We found that glycine is released from vesicles when VIAAT is coexpressed with either the neuronal transporter GlyT2 or the glial transporter GlyT1. However, GlyT2 was more effective than GlyT1, probably because GlyT2 is unable to operate in the reverse mode, which gives it an advantage in maintaining the high cytosolic glycine concentration required for efficient vesicular loading by VIAAT. The vesicular inhibitory phenotype was gradually altered from glycinergic to GABAergic through mixed events when GABA is introduced into the secretory cell and competes for uptake by VIAAT. Interestingly, the VIAAT ortholog from Caenorhabditis elegans (UNC-47), a species lacking glycine transmission, also supports glycine exocytosis in the presence of GlyT2, and a point mutation of UNC-47 that abolishes GABA transmission in the worm confers glycine specificity. Together, these results suggest that an increased cytosolic availability of glycine in VIAAT-containing terminals was crucial for the emergence of glycinergic transmission in vertebrates.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/biossíntese , Glicina/metabolismo , Fenótipo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/biossíntese , Animais , Caenorhabditis elegans , Linhagem Celular , Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Humanos , Ratos , Vesículas Sinápticas/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
10.
Nat Genet ; 38(7): 801-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16751771

RESUMO

Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Mutação , Reflexo de Sobressalto/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Feminino , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Humanos , Técnicas In Vitro , Recém-Nascido , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Terminações Pré-Sinápticas/fisiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reflexo de Sobressalto/fisiologia , Transfecção , Xenopus laevis
11.
FEBS Lett ; 529(1): 93-101, 2002 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-12354619

RESUMO

In the brain, neurons and glial cells compete for the uptake of the fast neurotransmitters, glutamate, GABA and glycine, through specific transporters. The relative contributions of glia and neurons to the neurotransmitter uptake depend on the kinetic properties, thermodynamic coupling and density of transporters but also on the intracellular metabolization or sequestration of the neurotransmitter. In the case of glycine, which is both an inhibitory transmitter and a neuromodulator of the excitatory glutamatergic transmission as a co-agonist of N-methyl D-aspartate receptors, the glial (GlyT1b) and neuronal (GlyT2a) transporters differ at least in three aspects: (i) stoichiometries, (ii) reverse uptake capabilities and (iii) pre-steady-state kinetics. A 3 Na(+)/1 Cl(-)/gly stoichiometry was established for GlyT2a on the basis of a 2 charges/glycine flux ratio and changes in the reversal potential of the transporter current as a function of the extracellular glycine, Na(+) and Cl(-) concentrations. Therefore, the driving force available for glycine uphill transport in neurons is about two orders of magnitude larger than for glial cells. In addition, GlyT2a shows a severe limitation for reverse uptake, which suggests an essential role of GlyT2a in maintaining a high intracellular glycine pool, thus facilitating the refilling of synaptic vesicles by the low affinity, low specificity vesicular transporter VGAT/VIAAT. In contrast, the 2 Na(+)/1 Cl(-)/gly stoichiometry and bi-directional transport properties of GlyT1b are appropriate for the control of the extracellular glycine concentration in a submicromolar range that can modulate N-methyl D-aspartate receptors effectively. Finally, analysis of the pre-steady-state kinetics of GlyT1b and GlyT2a revealed that at the resting potential neuronal transporters are preferentially oriented outward, ready to bind glycine, which suggests a kinetic advantage in the uptake contest.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos , Glicina/fisiologia , Proteínas de Membrana Transportadoras , Transportadores de Ânions Orgânicos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Sistema Nervoso Central/metabolismo , Eletrofisiologia , Proteínas da Membrana Plasmática de Transporte de GABA , Proteínas da Membrana Plasmática de Transporte de Glicina , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...